File size: 7,185 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import glob
import sys
from os.path import join


'''
    Note: Anywhere empty boxes means [] and not [[]]
'''


def remove_true_positives(gts, preds):

    def true_positive(gt, pred):
        # If center of pred is inside the gt, it is a true positive
        c_pred = ((pred[0]+pred[2])/2., (pred[1]+pred[3])/2.)
        if (c_pred[0] >= gt[0] and c_pred[0] <= gt[2] and
                c_pred[1] >= gt[1] and c_pred[1] <= gt[3]):
            return True
        return False

    tps = 0
    fns = 0

    for gt in gts:
        # First check if any true positive exists
        # If more than one exists, do not include it in next set of preds
        add_tp = False
        new_preds = []
        for pred in preds:
            if true_positive(gt, pred):
                add_tp = True
            else:
                new_preds.append(pred)
        preds = new_preds
        if add_tp:
            tps += 1
        else:
            fns += 1
    return preds, tps, fns



def calc_metric_single(gts, preds, threshold,):
    '''
        Returns fp, tp, tn, fn
    '''
    preds = list(filter(lambda x: x[0] >= threshold, preds))
    preds = [pred[1:] for pred in preds]  # Remove the scores

    if len(gts) == 0:
        return len(preds), 0, 1 if len(preds) == 0 else 0, 0
    preds, tps, fns = remove_true_positives(gts, preds)
    # All remaining will have to fps
    fps = len(preds)
    return fps, tps, 0, fns


def calc_metrics_at_thresh(im_dict, threshold):
    '''
        Returns fp, tp, tn, fn
    '''
    fps, tps, tns, fns = 0, 0, 0, 0
    for key in im_dict:
        fp,tp,tn,fn = calc_metric_single(im_dict[key]['gt'],
                           im_dict[key]['preds'], threshold)
        fps+=fp
        tps+=tp
        tns+=tn
        fns+=fn

    return fps, tps, tns, fns

from joblib import Parallel, delayed

def calc_metrics(inp):
    im_dict, tr = inp
    out = dict()
    for t in tr:
        fp, tp, tn, fn = calc_metrics_at_thresh(im_dict, t)
        out[t] = [fp, tp, tn, fn]
    return out
    

def calc_froc_from_dict(im_dict, fps_req = [0.025,0.05,0.1,0.15,0.2,0.3], save_to = None):

    num_images = len(im_dict)

    gap = 0.005
    n = int(1/gap)
    thresholds = [i * gap for i in range(n)]
    fps = [0 for _ in range(n)]
    tps = [0 for _ in range(n)]
    tns = [0 for _ in range(n)]
    fns = [0 for _ in range(n)]


    for i,t in enumerate(thresholds):
        fps[i], tps[i], tns[i], fns[i] = calc_metrics_at_thresh(im_dict, t)


    # Now calculate the sensitivities
    senses = []
    for t,f in zip(tps, fns):
        try: senses.append(t/(t+f))
        except: senses.append(0.)

    if save_to is not None:
        f = open(save_to, 'w')
        for fp,s in zip(fps, senses):
            f.write(f'{fp/num_images} {s}\n')
        f.close()

    senses_req = []
    for fp_req in fps_req:
        for i,f in enumerate(fps):
            if f/num_images < fp_req:
                if fp_req == 0.1:
                    print(fps[i], tps[i], tns[i], fns[i])
                    prec = tps[i]/(tps[i] + fps[i])
                    recall = tps[i]/(tps[i] + fns[i])
                    f1 = 2*prec*recall/(prec+recall)
                    spec = tns[i]/ (tns[i] + fps[i])
                    print(f'Specificity: {spec}')
                    print(f'Precision: {prec}')
                    print(f'Recall: {recall}')
                    print(f'F1: {f1}')
                senses_req.append(senses[i-1])
                break
    return senses_req, fps_req




def file_to_bbox(file_name):
    try:
        content = open(file_name, 'r').readlines()
        st = 0
        if len(content) == 0:
            # Empty File Should Return []
            return []
        if content[0].split()[0].isalpha():
            st = 1
        return [[float(x) for x in line.split()[st:]] for line in content]
    except FileNotFoundError:
        print(f'No Corresponding Box Found for file {file_name}, using [] as preds')
        return []
    except Exception as e:
        print('Some Error',e)
        return []

def generate_image_dict(preds_folder_name='preds_42',
                        root_fol='/home/pranjal/densebreeast_datasets/AIIMS_C1',
                        mal_path=None, ben_path=None, gt_path=None,
                        mal_img_path = None, ben_img_path = None
                        ):

    mal_path = join(root_fol, mal_path) if mal_path else join(
        root_fol, 'mal', preds_folder_name)
    ben_path = join(root_fol, ben_path) if ben_path else join(
        root_fol, 'ben', preds_folder_name)
    mal_img_path = join(root_fol, mal_img_path) if mal_img_path else join(
        root_fol, 'mal', 'images')
    ben_img_path = join(root_fol, ben_img_path) if ben_img_path else join(
        root_fol, 'ben', 'images')
    gt_path = join(root_fol, gt_path) if gt_path else join(
        root_fol, 'mal', 'gt')


    '''
        image_dict structure:
            'image_name(without txt/png)' : {'gt' : [[...]], 'preds' : [[]]}
    '''
    image_dict = dict()

    # GT Might be sightly different from images, therefore we will index gts based on
    # the images folder instead.
    for file in os.listdir(mal_img_path):
        if not file.endswith('.png'):
            continue
        file = file[:-4] + '.txt'
        file = join(gt_path, file)
        key = os.path.split(file)[-1][:-4]
        image_dict[key] = dict()
        image_dict[key]['gt'] = file_to_bbox(file)
        image_dict[key]['preds'] = []

    for file in glob.glob(join(mal_path, '*.txt')):
        key = os.path.split(file)[-1][:-4]
        assert key in image_dict
        image_dict[key]['preds'] = file_to_bbox(file)

    for file in os.listdir(ben_img_path):
        if not file.endswith('.png'):
            continue

        file = file[:-4] + '.txt'
        file = join(ben_path, file)
        key = os.path.split(file)[-1][:-4]
        if key == 'Calc-Test_P_00353_LEFT_CC' or key == 'Calc-Training_P_00600_LEFT_CC': # Corrupt Files in Dataset
            continue
        if key in image_dict:
            print(key)
        # assert key not in image_dict
        if key in image_dict:
            print(f'Unexpected Error. {key} exists in multiple splits')
            continue
        image_dict[key] = dict()
        image_dict[key]['preds'] = file_to_bbox(file)
        image_dict[key]['gt'] = []
    return image_dict


def pretty_print_fps(senses,fps):
    for s,f in zip(senses,fps):
        print(f'Sensitivty at {f}: {s}')

def get_froc_points(preds_image_folder, root_fol, fps_req = [0.025,0.05,0.1,0.15,0.2,0.3], save_to = None):
    im_dict = generate_image_dict(preds_image_folder, root_fol = root_fol)
    # print(im_dict)
    print(len(im_dict))
    senses, fps = calc_froc_from_dict(im_dict, fps_req, save_to = save_to)
    return senses, fps

if __name__ == '__main__':
    seed = '42' if len(sys.argv)== 1 else sys.argv[1]

    root_fol = '../bilateral_new/MammoDatasets/AIIMS_highres_reliable/test_2'

    if len(sys.argv) <= 2:
        save_to = None
    else:
        save_to = sys.argv[2]
    senses, fps = get_froc_points(f'preds_{seed}',root_fol, save_to = save_to)

    pretty_print_fps(senses, fps)