File size: 11,266 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Experimenter Class is responsible for mainly four things:
# 1. Configuration - Done
# 2. Logging using the AdvancedLogger class - Almost Done
# 3. Model Handling, including loading and saving models - Done(Upgrades Left)
# 4. Running Different Variants Paralelly/Sequentially of experiments
# 5. Combining frcnn training followed by bilateral training and final froc calculation - Done
# 6. Version Control

from advanced_config import AdvancedConfig
from advanced_logger import AdvancedLogger, LogPriority
import os
from os.path import join
from plot_froc import plot_froc
from train_frcnn import main as TRAIN_FRCNN
from train_bilateral import main as TRAIN_BILATERAL
import torch
from model_utils import generate_predictions, generate_predictions_bilateral
import argparse
from dataloaders import get_dict
from utils import create_backup
from torch.utils.tensorboard import SummaryWriter

class Experimenter:

    def __init__(self, cfg_file, BASE_DIR = 'experiments'):
        self.cfg_file = cfg_file        
        
        self.con = AdvancedConfig(cfg_file)
        self.config = self.con.config
        self.exp_dir = join(BASE_DIR,self.config['EXP_NAME'])
        os.makedirs(self.exp_dir, exist_ok=True)
        self.con.save(join(self.exp_dir,'config.cfg'))
    
        self.logger = AdvancedLogger(self.exp_dir)
        self.logger.log('Experiment:',self.config['EXP_NAME'],priority = LogPriority.STATS)
        self.logger.log('Experiment Description:', self.config['EXP_DESC'], priority = LogPriority.STATS)
        self.logger.log('Config File:',self.cfg_file, priority = LogPriority.STATS)
        self.logger.log('Experiment started', priority = LogPriority.LOW)
        self.losses = dict()
        self.frocs = dict()

        self.writer = SummaryWriter(join(self.exp_dir,'tensor_logs'))

        create_backup(backup_dir=join(self.exp_dir,'scripts'))

    def log(self, *args, **kwargs):
        self.logger.log(*args, **kwargs)


    def init_losses(self,mode):
        if mode == 'FRCNN' or mode == 'FRCNN_BILATERAL':
            self.losses['frcnn_loss'] = []
            self.frocs['frcnn_froc'] = []
        elif mode == 'BILATERAL' or mode == 'FRCNN_BILATERAL':
            self.losses['bilateral_loss'] = []
            self.frocs['bilateral_froc'] = []

    def start_epoch(self):
        self.curr_epoch += 1
        self.logger.log('Epoch:',self.curr_epoch, priority = LogPriority.MEDIUM)

    def end_epoch(self, loss, model = None, device = None):
        if self.curr_mode == 'FRCNN':
            self.losses['frcnn_loss'].append(loss)
            self.best_loss = min(self.losses['frcnn_loss'])
            if self.config['EVAL_METHOD'] == 'FROC':
                exp_name = self.config['EXP_NAME']
                _, val_path, _ = self.init_paths()
                generate_predictions(model,device,val_path,f'preds_frcnn_{exp_name}')
                from froc_by_pranjal import get_froc_points
                senses, _ = get_froc_points(f'preds_frcnn_{exp_name}', root_fol= join(self.config['DATA_DIR'],self.config['AIIMS_DATA'], self.config['AIIMS_VAL_SPLIT']), fps_req = [0.2])
                self.frocs['frcnn_froc'].append(senses[0])
                self.best_froc = max(self.frocs['frcnn_froc'])
                self.logger.log(f'Val FROC: {senses[0]}', LogPriority.MEDIUM)
                self.logger.log(f'Best FROC: {self.best_froc}')
        elif self.curr_mode == 'BILATERAL':
            self.losses['bilateral_loss'].append(loss)
            self.best_loss = min(self.losses['bilateral_loss'])    
            if self.config['EVAL_METHOD'] == 'FROC':
                exp_name = self.config['EXP_NAME']
                _, val_path, _ = self.init_paths()
                data_dir = self.config['DATA_DIR']
                print('Generating')
                generate_predictions_bilateral(model,device,val_path,get_dict(data_dir,self.abs_path(self.config['AIIMS_CORRS_LIST'])),preds_folder = f'preds_bilateral_{exp_name}')
                print('Generation Done')
                from froc_by_pranjal import get_froc_points
                senses, _ = get_froc_points(f'preds_bilateral_{exp_name}', root_fol= join(self.config['DATA_DIR'],self.config['AIIMS_DATA'], self.config['AIIMS_VAL_SPLIT']), fps_req = [0.1])
                print('Reading Sens from',f'preds_bilateral_{exp_name}', join(self.config['DATA_DIR'],self.config['AIIMS_DATA'], self.config['AIIMS_VAL_SPLIT']),)
                
                self.frocs['bilateral_froc'].append(senses[0])
                self.best_froc = max(self.frocs['bilateral_froc'])
                self.logger.log(f'Val FROC: {senses[0]}', priority = LogPriority.MEDIUM)
                self.logger.log(f'Best FROC: {self.best_froc}')
  
        self.writer.add_scalar(f"{self.curr_mode}/Loss/Valid", loss, self.curr_epoch)
    
    
    
    def save_model(self, model):
        if self.curr_mode == 'FRCNN':
            self.logger.log('Saving FRCNN Model', priority = LogPriority.LOW)
            model_file = join(self.exp_dir,'frcnn_models',f'frcnn_model.pth')
            if self.config['EVAL_METHOD']:
                SAVE = self.best_froc == self.frocs['frcnn_froc'][-1]
            else:
                SAVE = self.best_loss == self.losses['frcnn_loss'][-1]
        elif self.curr_mode == 'BILATERAL':
            self.logger.log('Saving Bilateral Model', priority = LogPriority.LOW)
            model_file = join(self.exp_dir,'bilateral_models',f'bilateral_model.pth')
            if self.config['EVAL_METHOD'] == 'FROC':
                SAVE = self.best_froc == self.frocs['bilateral_froc'][-1]
            else:
                SAVE = self.best_loss == self.losses['bilateral_loss'][-1]
        os.makedirs(os.path.split(model_file)[0], exist_ok=True)
        if SAVE:
            torch.save(model.state_dict(), model_file)
        
        torch.save(model.state_dict(), f'{model_file[:-4]}_{self.curr_epoch}.pth')

    def init_paths(self,):
        train_path = join(self.config['DATA_DIR'], self.config['AIIMS_DATA'], self.config['AIIMS_TRAIN_SPLIT'])
        val_path = join(self.config['DATA_DIR'],   self.config['AIIMS_DATA'], self.config['AIIMS_VAL_SPLIT'])
        test_path = join(self.config['DATA_DIR'],  self.config['AIIMS_DATA'], self.config['AIIMS_TEST_SPLIT'])
        return train_path, val_path, test_path

    def abs_path(self, path):
        return join(self.config['DATA_DIR'], path)

    # Impure Function, upadtes the model with best state dicts 
    def generate_predictions(self,model, device):
        self.logger.log('Generating Predictions')
        self.logger.flush()
        exp_name = self.config['EXP_NAME']
        train_path, val_path, test_path = self.init_paths()

        # Load the best val_loss model's state dicts
        if self.curr_mode == 'FRCNN':
            model_file = join(self.exp_dir,'frcnn_models','frcnn_model.pth')
        elif self.curr_mode == 'BILATERAL':
            model_file = join(self.exp_dir,'bilateral_models','bilateral_model.pth')
        model.load_state_dict(torch.load(model_file))

        if self.curr_mode == 'FRCNN':
            generate_predictions(model,device,train_path,f'preds_frcnn_{exp_name}')
            generate_predictions(model,device,val_path,f'preds_frcnn_{exp_name}')
            generate_predictions(model,device,test_path,f'preds_frcnn_{exp_name}')
        elif self.curr_mode == 'BILATERAL':
            data_dir = self.config['DATA_DIR']
            generate_predictions_bilateral(model,device,train_path,get_dict(data_dir,self.abs_path(self.config['AIIMS_CORRS_LIST'])),'aiims',f'preds_bilateral_{exp_name}')
            generate_predictions_bilateral(model,device,val_path,get_dict(data_dir,self.abs_path(self.config['AIIMS_CORRS_LIST'])),'aiims',f'preds_bilateral_{exp_name}')
            generate_predictions_bilateral(model,device,test_path,get_dict(data_dir,self.abs_path(self.config['AIIMS_CORRS_LIST'])),'aiims',f'preds_bilateral_{exp_name}')
            test_path = join(self.config['DATA_DIR'], self.config['AIIMS_DATA'], self.config['AIIMS_TEST_SPLIT'])

    def run_experiment(self):

        # First Determine the mode of running the experiment
        mode = self.config['MODE']
        self.init_losses(mode)
        self.curr_mode = 'FRCNN'
        self.curr_epoch = -1
        self.best_loss = 999999
        self.best_froc = 0
        if mode == 'FRCNN':
            TRAIN_FRCNN(self.config['FRCNN'], self)
        elif mode == 'BILATERAL':
            self.curr_mode = 'BILATERAL'
            TRAIN_BILATERAL(self.config['BILATERAL'], self)
        elif mode == 'FRCNN_BILATERAL':
            TRAIN_FRCNN(self.config['FRCNN'], self)
            self.curr_mode = 'BILATERAL'
            self.curr_epoch = -1
            self.best_loss = 999999
            # Note the path to frcnn model must be the same as that dictated by experiment
            self.config['BILATERAL']['FRCNN_MODEL_PATH'] = join(self.exp_dir,'frcnn_models','frcnn_model.pth')
            TRAIN_BILATERAL(self.config['BILATERAL'], self)
        
        self.logger.log(f'Best Loss: {self.best_loss}', priority= LogPriority.STATS)
        self.logger.log('Experiment Training and Generation Ended', priority = LogPriority.MEDIUM)

        # Now evaluate the results

        frcnn_file = join(self.exp_dir, 'senses_fps_frcnn.txt')
        bilateral_file = join(self.exp_dir, 'senses_fps_bilateral.txt')
        from froc_by_pranjal import get_froc_points
        exp_name = self.config['EXP_NAME']
        if mode == 'FRCNN' or mode == 'FRCNN_BILATERAL':
            senses, fps = get_froc_points(f'preds_frcnn_{exp_name}', root_fol= join(self.config['DATA_DIR'],self.config['AIIMS_DATA'], self.config['AIIMS_TEST_SPLIT']), save_to = frcnn_file)
            self.logger.log('FRCNN RESULTS', priority = LogPriority.STATS)
            for s,f in zip(senses, fps):
                self.logger.log(f'Sensitivty at {f}: {s}', priority = LogPriority.STATS)
        if mode == 'BILATERAL' or mode == 'FRCNN_BILATERAL':
            senses, fps = get_froc_points(f'preds_bilateral_{exp_name}', root_fol= join(self.config['DATA_DIR'],self.config['AIIMS_DATA'], self.config['AIIMS_TEST_SPLIT']), save_to = bilateral_file)
            self.logger.log('BILATERAL RESULTS', priority = LogPriority.STATS)
            for s,f in zip(senses, fps):
                self.logger.log(f'Sensitivty at {f}: {s}', priority = LogPriority.STATS)


        # Now draw the graphs.... If FRCNN and BILATERAL both done, draw them on one graph
        # Else draw single graphs only
        if mode == 'FRCNN':
            plot_froc({frcnn_file : 'FRCNN'}, join(self.exp_dir,'plot.png'), TITLE = 'FRCNN FROC')
        elif mode == 'BILATERAL':
            plot_froc({bilateral_file : 'BILATERAL'}, join(self.exp_dir,'plot.png'), TITLE = 'BILATERAL FROC')
        elif mode == 'FRCNN_BILATERAL':
            plot_froc({frcnn_file : 'FRCNN', bilateral_file : 'BILATERAL'}, join(self.exp_dir,'plot.png'), TITLE = 'FRCNN vs BILATERAL FROC')
        self.logger.flush()

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg_file', type=str, default='configs/AIIMS_C1.cfg')
    args = parser.parse_args()
    exp = Experimenter(args.cfg_file)
    exp.run_experiment()