File size: 10,773 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Get the dataloaders
# There are only two types of dataloaders, viz. VanillaFRCNN and BilaterialFRCNN

import torch
import cv2
import torchvision.transforms as T
import detection.transforms as transforms
from torch.utils.data import Dataset,DataLoader
import detection.utils as utils
import os
from tqdm import tqdm
import pandas as pd
from os.path import join
# VanillaFRCNN DataLoaders

class FRCNNDataset(Dataset):
    def __init__(self,inputs,transform):
        self.transform = transform
        self.dataset_dicts = inputs

    def __len__(self):
        return len(self.dataset_dicts)


    def __getitem__(self,index: int):
        # Select the sample
        record = self.dataset_dicts[index]
        # Load input and target
        img = cv2.imread(record['file_name'])

        target = {k:torch.tensor(v) for k,v in record.items() if k != 'file_name'}
        if self.transform is not None:
            img = T.ToPILImage()(img)
            img,target = self.transform(img,target)

        return img,target

def xml_to_dicts(paths):
    dataset_dicts = []
    i=1
    for path in paths:
        for image in tqdm(os.listdir(os.path.join(path,'mal/images/'))):
            xmlfile = os.path.join(path,'mal/gt/',image[:-4]+'.txt')
            if(not os.path.exists(xmlfile)):
                continue
            img = cv2.imread(os.path.join(path,'mal/images/',image))
            record = {}
            record['file_name'] = os.path.join(path , 'mal/images/',image)
            record['image_id'] = i
            i+=1
            record['width'] = img.shape[1]
            record['height'] = img.shape[0]
            objs = []
            boxes = []
            labels = []
            area = []
            iscrowd = []
            f = open(xmlfile,'r')
            for line in f.readlines():
                box = list(map(int,map(float,line.split()[1:])))
                boxes.append(box)
                labels.append(1)
                area.append((box[2]-box[0])*(box[3]-box[1]))
                iscrowd.append(False)
            f.close()
            record["boxes"] = boxes
            record["labels"] = labels
            record["area"] = area
            record["iscrowd"] = iscrowd
            if(len(boxes)>0):
                dataset_dicts.append(record)
        for image in tqdm(os.listdir(os.path.join(path,'ben/images/'))):
            img = cv2.imread(os.path.join(path,'ben/images/',image))
            record = {}
            record['file_name'] = os.path.join(path, 'ben/images/',image)
            record['image_id'] = i
            i+=1
            record['width'] = img.shape[1]
            record['height'] = img.shape[0]
            record['boxes'] = torch.tensor([[0,0,img.shape[1],img.shape[0]]])
            record['labels'] = torch.tensor([0])
            record['area'] = [img.shape[1]*img.shape[0]]
            record["iscrowd"] = [False]
            dataset_dicts.append(record)
    return dataset_dicts



def get_FRCNN_dataloaders(cfg, batch_size = 2, data_dir = '../bilateral_new',):
    transform_test = transforms.Compose([transforms.ToTensor()])
    transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.ToTensor()])
    train_paths = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_TRAIN_SPLIT']),join(data_dir,cfg['DDSM_DATA'],cfg['DDSM_TRAIN_SPLIT']),]
    val_aiims_path = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_VAL_SPLIT'])]
    train_data = FRCNNDataset(xml_to_dicts(train_paths),transform_train)
    test_aiims = FRCNNDataset(xml_to_dicts(val_aiims_path),transform_test)

    train_loader = DataLoader(train_data,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn)
    test_aiims_loader = DataLoader(test_aiims,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn)
    #test_ddsm_loader = DataLoader(test_ddsm,batch_size=2,shuffle=True,drop_last=True,num_workers=5,collate_fn = utils.collate_fn)

    return train_loader, test_aiims_loader

# BilaterialFRCNN DataLoaders

def get_direction(dset,file_name):
        # 1 if right else -1
        if dset == 'aiims' or dset == 'ddsm':
            file_name = file_name.lower()
            r = file_name.find('right')
            l = file_name.find('left')
            if l == r and l == -1:
                raise Exception(f'Unidentifiable Direction {file_name}')
            if l!=-1 and r!=-1:
                raise Exception(f'Unidentifiable Direction {file_name}')
            return 1 if r!=-1 else -1
        if dset == 'inbreast':
            dir =file_name.split('_')[3]
            if dir == 'R': return 1
            if dir == 'L': return -1
            raise Exception(f'Unidentifiable Direction {file_name}')
        if dset == 'irch': 
            r = file_name.find('_R ')
            l = file_name.find('_L ')
            if l == r and l == -1:
                raise Exception(f'Unidentifiable Direction {file_name}')
            if l!=-1 and r!=-1:
                raise Exception(f'Unidentifiable Direction {file_name}')
            return 1 if r!=-1 else -1


class BilateralDataset(torch.utils.data.Dataset):

    def __init__(self,inputs,transform,dset):
        self.transform = transform
        self.dataset_dicts = inputs
        self.dset = dset

    def __len__(self):
        return len(self.dataset_dicts)
    

    def __getitem__(self,index: int):
        # Select the sample
        record = self.dataset_dicts[index]
        # Load input and target
        img1 = cv2.imread(record['file_name'])
        img2 = cv2.imread(record['file_2'])

        target = {k:torch.tensor(v) for k,v in record.items() if k != 'file_name' and k!='file_2'}
        if self.transform is not None:
            img1 = T.ToPILImage()(img1)
            img2 = T.ToPILImage()(img2)
            if(get_direction(self.dset,record['file_name'].split('/')[-1])==1):
                img1,target = transforms.RandomHorizontalFlip(1.0)(img1,target)
            else:
                img2,_ = transforms.RandomHorizontalFlip(1.0)(img2)
            img1,target = self.transform(img1,target)
            img2,target = self.transform(img2,target)

        images = [img1,img2]
        return images,target


def xml_to_dicts_bilateral(paths,cor_dicts):
    dataset_dicts = []
    i=1
    for path,cor_dict in zip(paths,cor_dicts):
        for image in tqdm(os.listdir(os.path.join(path,'mal/images/'))):
            if(not os.path.join(path,'mal/images/',image) in cor_dict):
                continue
            if(not os.path.isfile(cor_dict[os.path.join(path,'mal/images/',image)])):
                continue
            xmlfile = os.path.join(path,'mal/gt/',image[:-4]+'.txt')
            if(not os.path.exists(xmlfile)):
                continue
            img = cv2.imread(os.path.join(path,'mal/images/',image))
            
            record = {}
            record['file_name'] = os.path.join(path , 'mal/images/',image)
            record['file_2'] = cor_dict[os.path.join(path,'mal/images/',image)]
            record['image_id'] = i
            i+=1
            record['width'] = img.shape[1]
            record['height'] = img.shape[0]
            objs = []
            boxes = []
            labels = []
            area = []
            iscrowd = []
            f = open(xmlfile,'r')
            for line in f.readlines():
                box = list(map(int,map(float,line.split()[1:])))
                boxes.append(box)
                labels.append(1)
                area.append((box[2]-box[0])*(box[3]-box[1]))
                iscrowd.append(False)

            f.close()
            record["boxes"] = boxes
            record["labels"] = labels
            record["area"] = area
            record["iscrowd"] = iscrowd
            if(len(boxes)>0):
                dataset_dicts.append(record)

        for image in tqdm(os.listdir(os.path.join(path,'ben/images/'))):
            if(not os.path.join(path,'ben/images/',image) in cor_dict):
                continue
            if(not os.path.isfile(cor_dict[os.path.join(path,'ben/images/',image)])):
                continue
            img = cv2.imread(os.path.join(path,'ben/images/',image))

            record = {}
            record['file_name'] = os.path.join(path , 'ben/images/',image)
            record['file_2'] = cor_dict[os.path.join(path,'ben/images/',image)]
            img2 = cv2.imread(cor_dict[os.path.join(path,'ben/images/',image)])
            record['image_id'] = i
            i+=1
            record['width'] = img.shape[1]
            record['height'] = img.shape[0]

            record["boxes"] = torch.tensor([[0,0,min(img.shape[1],img2.shape[1]),min(img.shape[0],img2.shape[0])]])
            record['labels'] = torch.tensor([0])
            record['area'] = [ min(img.shape[1],img2.shape[1]) *min(img.shape[0],img2.shape[0])]
            record["iscrowd"] = [False]
            if(len(boxes)>0):
               dataset_dicts.append(record)

    return dataset_dicts



def get_dict(data_dir, filename):
    df = pd.read_csv(filename, header=None, sep=r'\s+', quotechar='"').to_numpy()
    cor_dict = dict()
    for a in df:
      if(a[0]==a[1]):
        continue
      cor_dict[a[0]] = a[1]
    # print(cor_dict)
    cor_dict = {join(data_dir,k):join(data_dir,v) for k,v in cor_dict.items()}
    return cor_dict

def get_bilateral_dataloaders(cfg, batch_size = 1, data_dir = '../bilateral_new'):
    transform_test = transforms.Compose([transforms.ToTensor()])
    transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.ToTensor()])
    train_paths = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_TRAIN_SPLIT']),join(data_dir,cfg['DDSM_DATA'],cfg['DDSM_TRAIN_SPLIT']),]
    val_aiims_path = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_VAL_SPLIT'])]
    cor_lists_train = [get_dict(data_dir,join(data_dir,cfg['AIIMS_CORRS_LIST'])),get_dict(data_dir,join(data_dir,cfg['DDSM_CORRS_LIST']))]
    cor_lists_val = [get_dict(data_dir,join(data_dir,cfg['AIIMS_CORRS_LIST']))]
    cor_lists_train = [get_dict(data_dir,join(data_dir,cfg['AIIMS_CORRS_LIST']))]
    train_data = BilateralDataset(xml_to_dicts_bilateral(train_paths,cor_lists_train),transform_test,'aiims')
    val_aiims = BilateralDataset(xml_to_dicts_bilateral(val_aiims_path,cor_lists_val),transform_test,'aiims')

    train_loader = DataLoader(train_data,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn)
    val_aiims_loader = DataLoader(val_aiims,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn)
    #test_ddsm_loader = DataLoader(test_ddsm,batch_size=2,shuffle=True,drop_last=True,num_workers=5,collate_fn = utils.collate_fn)

    return train_loader, val_aiims_loader