Text_to_Speech / app.py
Pranjal12345's picture
Update app.py
1d9f047
raw
history blame
1.99 kB
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_voice, load_voices
VOICE_OPTIONS = [
"angie",
"deniro",
"freeman",
"random",
]
def inference(
text,
voice,
preset_option,
):
texts = [text]
voices = [voice]
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
start_time = time.time()
for j, text in enumerate(texts):
for audio_frame in tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset= preset_option,
k=1
):
yield (24000, audio_frame.cpu().detach().numpy())
def main():
title = "Tortoise TTS "
text = gr.Textbox(
lines=4,
label="Text:",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
)
preset_option = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality"],
label="ultra_fast for quick inference and high_quality for better inference",
type="value",
value="ultra_fast",
)
output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
interface = gr.Interface(
fn=inference,
inputs=[
text,
voice,
preset_option,
],
title=title,
outputs=[output_audio],
)
interface.queue().launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()