Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import jax
|
| 4 |
+
import numpy as np
|
| 5 |
+
from flax import linen as nn # Linen API
|
| 6 |
+
from huggingface_hub import HfFileSystem
|
| 7 |
+
from flax.serialization import msgpack_restore, from_state_dict
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
LATENT_DIM = 100
|
| 11 |
+
|
| 12 |
+
class Generator(nn.Module):
|
| 13 |
+
@nn.compact
|
| 14 |
+
def __call__(self, latent, training=True):
|
| 15 |
+
x = latent
|
| 16 |
+
x = nn.Dense(features=64)(x)
|
| 17 |
+
x = nn.BatchNorm(not training)(x)
|
| 18 |
+
x = nn.relu(x)
|
| 19 |
+
x = nn.Dense(features=2*2*512)(x)
|
| 20 |
+
x = nn.relu(x)
|
| 21 |
+
x = x.reshape((x.shape[0], 2, 2, -1))
|
| 22 |
+
x = nn.ConvTranspose(features=256, kernel_size=(2, 2), strides=(2, 2))(x)
|
| 23 |
+
x = nn.relu(x)
|
| 24 |
+
x = nn.ConvTranspose(features=128, kernel_size=(2, 2), strides=(2, 2))(x)
|
| 25 |
+
x = nn.relu(x)
|
| 26 |
+
x = nn.ConvTranspose(features=64, kernel_size=(2, 2), strides=(2, 2))(x)
|
| 27 |
+
x = nn.relu(x)
|
| 28 |
+
x = nn.ConvTranspose(features=1, kernel_size=(2, 2), strides=(2, 2))(x)
|
| 29 |
+
x = nn.tanh(x)
|
| 30 |
+
|
| 31 |
+
generator = Generator()
|
| 32 |
+
|
| 33 |
+
fs = HfFileSystem()
|
| 34 |
+
with fs.open("PrakhAI/DigitGAN/g_checkpoint.msgpack", "rb") as f:
|
| 35 |
+
params = from_state_dict(params, msgpack_restore(f.read())["params"])
|
| 36 |
+
|
| 37 |
+
def sample_latent(key):
|
| 38 |
+
return jax.random.normal(key, shape=(1, LATENT_DIM))
|
| 39 |
+
|
| 40 |
+
if st.button('Generate Digit'):
|
| 41 |
+
latents = sample_latent(jax.random.PRNGKey(int(1_000_000 * time.time())))
|
| 42 |
+
g_out = Generator().apply({'params': g_state.params, 'batch_stats': g_state.batch_stats}, latents, training=False)
|
| 43 |
+
img = ((np.array(g_out)+1)*255./2.).astype(np.uint8)[0]
|
| 44 |
+
st.image(Image.fromarray(np.repeat(img, repeats=3, axis=2)))
|