import streamlit as st from PIL import Image import jax import numpy as np import jax.numpy as jnp # JAX NumPy from flax.training import train_state # Useful dataclass to keep train state from flax import linen as nn # Linen API from huggingface_hub import HfFileSystem from flax.serialization import msgpack_restore, from_state_dict import os import tensorflow as tf hf_key = text_input = st.text_input("Access token") class CNN(nn.Module): @nn.compact def __call__(self, x): x = nn.Conv(features=32, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = nn.Conv(features=64, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = x.reshape((x.shape[0], -1)) # flatten x = nn.Dense(features=256)(x) x = nn.relu(x) x = nn.Dense(features=16)(x) x = nn.relu(x) x = nn.Dense(features=2)(x) return x cnn = CNN() params = cnn.init(jax.random.PRNGKey(0), jnp.ones([1, 50, 50, 3]))['params'] fs = HfFileSystem(token=hf_key) with fs.open("PrakhAI/CatVsDog/checkpoint.msgpack", "rb") as f: params = from_state_dict(params, msgpack_restore(f.read())["params"]) uploaded_files = st.file_uploader("Input images of cats or dogs (examples in files)", type=['jpg','png','tif'], accept_multiple_files=True) if len(uploaded_files) == 0: st.write("Please upload an image!") else: for uploaded_file in uploaded_files: img = Image.open(uploaded_file) st.image(img) input = tf.cast(tf.image.resize(tf.convert_to_tensor(img), [50, 50]), tf.float32) / 255. st.write("Model Prediction: " + cnn.apply({"params": params}, input)) st.write("Model Prediction type: " + type(cnn.apply({"params": params}, input))) st.write("Model Prediction type dir: " + dir(cnn.apply({"params": params}, input))) def gridify(kernel, grid, kernel_size, scaling=5, padding=1): scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,)) grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, 3, grid[0], grid[1])).transpose(3,0,4,1,2).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding), 3)+1)*127., ((padding,),(padding,),(0,)), 'constant', constant_values=(0,)) st.image(Image.fromarray(grid.astype(np.uint8), mode="RGB")) with st.expander("See first convolutional layer"): gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3)) with st.expander("See second convolutional layer"): print(params["Conv_1"]["kernel"].shape) gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))