Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import jax
|
4 |
+
import numpy as np
|
5 |
+
import jax.numpy as jnp # JAX NumPy
|
6 |
+
from flax.training import train_state # Useful dataclass to keep train state
|
7 |
+
from flax import linen as nn # Linen API
|
8 |
+
from huggingface_hub import HfFileSystem
|
9 |
+
from flax.serialization import msgpack_restore, from_state_dict
|
10 |
+
import os
|
11 |
+
import tensorflow as tf
|
12 |
+
|
13 |
+
hf_key = text_input = st.text_input("Access token")
|
14 |
+
|
15 |
+
class CNN(nn.Module):
|
16 |
+
"""A simple CNN model."""
|
17 |
+
|
18 |
+
@nn.compact
|
19 |
+
def __call__(self, x):
|
20 |
+
x = nn.Conv(features=32, kernel_size=(3, 3))(x)
|
21 |
+
x = nn.relu(x)
|
22 |
+
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
|
23 |
+
x = nn.Conv(features=64, kernel_size=(3, 3))(x)
|
24 |
+
x = nn.relu(x)
|
25 |
+
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
|
26 |
+
x = x.reshape((x.shape[0], -1)) # flatten
|
27 |
+
x = nn.Dense(features=256)(x)
|
28 |
+
x = nn.relu(x)
|
29 |
+
x = nn.Dense(features=16)(x)
|
30 |
+
x = nn.relu(x)
|
31 |
+
x = nn.Dense(features=2)(x)
|
32 |
+
return x
|
33 |
+
|
34 |
+
cnn = CNN()
|
35 |
+
params = cnn.init(jax.random.PRNGKey(0), jnp.ones([1, 50, 50, 3]))['params']
|
36 |
+
|
37 |
+
fs = HfFileSystem(token=hf_key)
|
38 |
+
with fs.open("PrakhAI/CatVsDog/checkpoint.msgpack", "rb") as f:
|
39 |
+
params = from_state_dict(params, msgpack_restore(f.read())["params"])
|
40 |
+
|
41 |
+
uploaded_files = st.file_uploader("Input images of cats or dogs (examples in files)", type=['jpg','png','tif'], accept_multiple_files=True)
|
42 |
+
|
43 |
+
if len(uploaded_files) == 0:
|
44 |
+
st.write("Please upload an image!")
|
45 |
+
else:
|
46 |
+
for uploaded_file in uploaded_files:
|
47 |
+
img = Image.open(uploaded_file)
|
48 |
+
st.image(img)
|
49 |
+
input = tf.image_resize(tf.convert_to_tensor(img), [50, 50])
|
50 |
+
st.write("Model Prediction: " + cnn.apply({"params": params}, input))
|
51 |
+
st.write("Model Prediction type: " + type(cnn.apply({"params": params}, input)))
|
52 |
+
st.write("Model Prediction type dir: " + dir(cnn.apply({"params": params}, input)))
|
53 |
+
|
54 |
+
def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
|
55 |
+
scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
|
56 |
+
grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,))
|
57 |
+
st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB"))
|
58 |
+
|
59 |
+
with st.expander("See first convolutional layer"):
|
60 |
+
gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3))
|
61 |
+
|
62 |
+
with st.expander("See second convolutional layer"):
|
63 |
+
print(params["Conv_1"]["kernel"].shape)
|
64 |
+
gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))
|