Update app.py
Browse files
app.py
CHANGED
@@ -34,29 +34,29 @@ params = cnn.init(jax.random.PRNGKey(0), jnp.ones([1, 50, 50, 3]))['params']
|
|
34 |
|
35 |
fs = HfFileSystem(token=hf_key)
|
36 |
with fs.open("PrakhAI/CatVsDog/checkpoint.msgpack", "rb") as f:
|
37 |
-
|
38 |
|
39 |
uploaded_files = st.file_uploader("Input images of cats or dogs (examples in files)", type=['jpg','png','tif'], accept_multiple_files=True)
|
40 |
|
41 |
if len(uploaded_files) == 0:
|
42 |
-
|
43 |
else:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
with st.expander("See first convolutional layer"):
|
58 |
-
|
59 |
|
60 |
with st.expander("See second convolutional layer"):
|
61 |
-
|
62 |
-
|
|
|
34 |
|
35 |
fs = HfFileSystem(token=hf_key)
|
36 |
with fs.open("PrakhAI/CatVsDog/checkpoint.msgpack", "rb") as f:
|
37 |
+
params = from_state_dict(params, msgpack_restore(f.read())["params"])
|
38 |
|
39 |
uploaded_files = st.file_uploader("Input images of cats or dogs (examples in files)", type=['jpg','png','tif'], accept_multiple_files=True)
|
40 |
|
41 |
if len(uploaded_files) == 0:
|
42 |
+
st.write("Please upload an image!")
|
43 |
else:
|
44 |
+
for uploaded_file in uploaded_files:
|
45 |
+
img = Image.open(uploaded_file)
|
46 |
+
st.image(img)
|
47 |
+
input = jnp.array(tf.cast(tf.image.resize(tf.convert_to_tensor(img), [50, 50]), tf.float32) / 255.)
|
48 |
+
st.write("Model Prediction: " + cnn.apply({"params": params}, input))
|
49 |
+
st.write("Model Prediction type: " + type(cnn.apply({"params": params}, input)))
|
50 |
+
st.write("Model Prediction type dir: " + dir(cnn.apply({"params": params}, input)))
|
51 |
|
52 |
def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
|
53 |
+
scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
|
54 |
+
grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, 3, grid[0], grid[1])).transpose(3,0,4,1,2).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding), 3)+1)*127., ((padding,),(padding,),(0,)), 'constant', constant_values=(0,))
|
55 |
+
st.image(Image.fromarray(grid.astype(np.uint8), mode="RGB"))
|
56 |
|
57 |
with st.expander("See first convolutional layer"):
|
58 |
+
gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3))
|
59 |
|
60 |
with st.expander("See second convolutional layer"):
|
61 |
+
print(params["Conv_1"]["kernel"].shape)
|
62 |
+
gridify(params["Conv_1"]["kernel"], grid=(64,96), kernel_size=(3,3))
|