PrakhAI commited on
Commit
432e776
·
1 Parent(s): b5be8ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -50,18 +50,22 @@ else:
50
  st.image(Image.open(image))
51
  [cat_prob, dog_prob] = jax.nn.softmax(prediction[index])
52
  if cat_prob > dog_prob:
53
- st.write(f"Model Prediction - Cat ({100*cat_prob}%), Dog ({100*dog_prob}%)")
54
  else:
55
- st.write(f"Model Prediction - Dog ({100*dog_prob}%), Cat ({100*cat_prob}%)")
56
 
57
- def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
58
  scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
59
  grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, 3, grid[0], grid[1])).transpose(3,0,4,1,2).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding), 3)+1)*127., ((padding,),(padding,),(0,)), 'constant', constant_values=(0,))
60
  st.image(Image.fromarray(grid.astype(np.uint8), mode="RGB"))
61
 
 
 
 
 
 
62
  with st.expander("See first convolutional layer"):
63
- gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3))
64
 
65
  with st.expander("See second convolutional layer"):
66
- print(params["Conv_1"]["kernel"].shape)
67
- gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))
 
50
  st.image(Image.open(image))
51
  [cat_prob, dog_prob] = jax.nn.softmax(prediction[index])
52
  if cat_prob > dog_prob:
53
+ st.write(f"Model Prediction - Cat ({100*cat_prob:.2f}%), Dog ({100*dog_prob:.2f}%)")
54
  else:
55
+ st.write(f"Model Prediction - Dog ({100*dog_prob:.2f}%), Cat ({100*cat_prob:.2f}%)")
56
 
57
+ def gridify_rgb(kernel, grid, kernel_size, scaling=5, padding=1):
58
  scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
59
  grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, 3, grid[0], grid[1])).transpose(3,0,4,1,2).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding), 3)+1)*127., ((padding,),(padding,),(0,)), 'constant', constant_values=(0,))
60
  st.image(Image.fromarray(grid.astype(np.uint8), mode="RGB"))
61
 
62
+ def gridify_grayscale(kernel, grid, kernel_size, scaling=5, padding=1):
63
+ scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
64
+ grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,))
65
+ st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB"))
66
+
67
  with st.expander("See first convolutional layer"):
68
+ gridify_rgb(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3))
69
 
70
  with st.expander("See second convolutional layer"):
71
+ gridify_grayscale(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))