Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,20 @@
|
|
1 |
from PIL import Image
|
2 |
-
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
3 |
import warnings
|
4 |
import requests
|
5 |
import gradio as gr
|
6 |
|
7 |
warnings.filterwarnings('ignore')
|
8 |
|
9 |
-
# Load the pre-trained Vision Transformer model and feature extractor
|
10 |
-
model_name = "google/vit-base-patch16-224"
|
11 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
12 |
-
model = ViTForImageClassification.from_pretrained(model_name)
|
13 |
-
|
14 |
# API key for the nutrition information
|
15 |
api_key = 'XshljGSwf/pq3GcgBdHtOg==G9X2wnPqW5c6vp0F'
|
16 |
|
17 |
def identify_image(image_path):
|
18 |
"""Identify the food item in the image."""
|
|
|
|
|
19 |
image = Image.open(image_path)
|
20 |
-
|
21 |
-
|
22 |
-
logits = outputs.logits
|
23 |
-
predicted_class_idx = logits.argmax(-1).item()
|
24 |
-
predicted_label = model.config.id2label[predicted_class_idx]
|
25 |
-
food_name = predicted_label.split(',')[0]
|
26 |
-
return food_name
|
27 |
|
28 |
def get_calories(food_name):
|
29 |
"""Get the calorie information of the identified food item."""
|
|
|
1 |
from PIL import Image
|
|
|
2 |
import warnings
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
|
6 |
warnings.filterwarnings('ignore')
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
# API key for the nutrition information
|
9 |
api_key = 'XshljGSwf/pq3GcgBdHtOg==G9X2wnPqW5c6vp0F'
|
10 |
|
11 |
def identify_image(image_path):
|
12 |
"""Identify the food item in the image."""
|
13 |
+
API_URL = "https://api-inference.huggingface.co/models/nateraw/food"
|
14 |
+
headers = {"Authorization": huggingface_api}
|
15 |
image = Image.open(image_path)
|
16 |
+
response = requests.post(API_URL, headers=headers, data=image)
|
17 |
+
return response.json()[0]['label']
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def get_calories(food_name):
|
20 |
"""Get the calorie information of the identified food item."""
|