Spaces:
Build error
Build error
Commit
·
cd15d50
1
Parent(s):
83fdac1
Update app.py
Browse files
app.py
CHANGED
@@ -76,11 +76,45 @@ def is_reduction(code_txt, label):
|
|
76 |
# Define GUI
|
77 |
|
78 |
with gr.Blocks() as pragformer_gui:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
gr.Markdown(
|
80 |
"""
|
81 |
-
|
82 |
|
83 |
-
|
84 |
In past years, the world has switched to many-core and multi-core shared memory architectures.
|
85 |
As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications.
|
86 |
OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface.
|
@@ -98,35 +132,15 @@ with gr.Blocks() as pragformer_gui:
|
|
98 |
|
99 |

|
100 |
|
101 |
-
Link to [PragFormer](https://arxiv.org/abs/2204.12835) Paper
|
102 |
-
""")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
with gr.Column():
|
107 |
-
gr.Markdown("## Input")
|
108 |
-
with gr.Row():
|
109 |
-
with gr.Column():
|
110 |
-
drop = gr.Dropdown(list(data.keys()), label="Random Code Snippet", value="LLNL/AutoParBench/benchmarks/Autopar/NPB3.0-omp-c/BT/bt/129")
|
111 |
-
sample_btn = gr.Button("Sample")
|
112 |
-
|
113 |
-
pragma = gr.Textbox(label="Pragma")
|
114 |
-
|
115 |
-
code_in = gr.Textbox(lines=5, label="Write some code and see if it should be parallelized with OpenMP")
|
116 |
-
submit_btn = gr.Button("Submit")
|
117 |
-
with gr.Column():
|
118 |
-
gr.Markdown("## Results")
|
119 |
-
label_out = gr.Textbox(label="Label")
|
120 |
-
confidence_out = gr.Textbox(label="Confidence")
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
126 |
-
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
127 |
-
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
128 |
-
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
129 |
-
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
130 |
|
131 |
|
132 |
pragformer_gui.launch()
|
|
|
76 |
# Define GUI
|
77 |
|
78 |
with gr.Blocks() as pragformer_gui:
|
79 |
+
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
# PragFormer Pragma Classifiction
|
83 |
+
|
84 |
+
""")
|
85 |
+
|
86 |
+
#with gr.Row(equal_height=True):
|
87 |
+
with gr.Column():
|
88 |
+
gr.Markdown("## Input")
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
drop = gr.Dropdown(list(data.keys()), label="Random Code Snippet", value="LLNL/AutoParBench/benchmarks/Autopar/NPB3.0-omp-c/BT/bt/129")
|
92 |
+
sample_btn = gr.Button("Sample")
|
93 |
+
|
94 |
+
pragma = gr.Textbox(label="Pragma")
|
95 |
+
|
96 |
+
code_in = gr.Textbox(lines=5, label="Write some code and see if it should be parallelized with OpenMP")
|
97 |
+
submit_btn = gr.Button("Submit")
|
98 |
+
with gr.Column():
|
99 |
+
gr.Markdown("## Results")
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
label_out = gr.Textbox(label="Label")
|
103 |
+
confidence_out = gr.Textbox(label="Confidence")
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
private = gr.Textbox(label="Private", visible=False)
|
107 |
+
reduction = gr.Textbox(label="Reduction", visible=False)
|
108 |
+
|
109 |
+
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
110 |
+
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
111 |
+
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
112 |
+
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
113 |
+
|
114 |
gr.Markdown(
|
115 |
"""
|
116 |
+
## Description
|
117 |
|
|
|
118 |
In past years, the world has switched to many-core and multi-core shared memory architectures.
|
119 |
As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications.
|
120 |
OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface.
|
|
|
132 |
|
133 |

|
134 |
|
|
|
|
|
135 |
|
136 |
+
## How it Works?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
To use the PragFormer tool, you will need to input a C language for-loop. You can either write your own code or use the samples
|
139 |
+
provided in the dropdown menu, which have been gathered from GitHub. Once you submit the code, the PragFormer model will analyze
|
140 |
+
it and predict whether the for-loop should be parallelized using OpenMP. If the PragFormer model determines that parallelization
|
141 |
+
is necessary, two additional models will be used to determine if private or reduction clauses are needed.
|
142 |
+
""")
|
143 |
|
|
|
|
|
|
|
|
|
144 |
|
145 |
|
146 |
pragformer_gui.launch()
|