Spaces:
Build error
Build error
Commit
·
b473578
1
Parent(s):
1fda8b6
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,13 +17,13 @@ pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragForm
|
|
| 17 |
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
| 18 |
|
| 19 |
|
| 20 |
-
#Event Listeners
|
| 21 |
with_omp_str = 'Should contain a parallel work-sharing loop construct'
|
| 22 |
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
| 23 |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
| 24 |
-
|
| 25 |
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
| 26 |
|
|
|
|
| 27 |
with open('c_data.json', 'r') as f:
|
| 28 |
data = json.load(f)
|
| 29 |
|
|
@@ -87,49 +87,61 @@ def is_reduction(code_txt):
|
|
| 87 |
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
| 88 |
|
| 89 |
|
| 90 |
-
def
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
return torch.nn.Softmax(dim=1)(torch.tensor(probas)).numpy()
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
def lime_explain(code_txt):
|
| 114 |
-
class_names = ['Without OpenMP', 'With OpenMP']
|
| 115 |
-
SAMPLES = 35
|
| 116 |
-
exp = []
|
| 117 |
|
| 118 |
-
|
| 119 |
-
return gr.update(visible=False)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
exp = explainer.explain_instance(code_txt, predictor, num_features=20, num_samples=SAMPLES)
|
| 123 |
|
| 124 |
-
return gr.update(visible=True, value=exp.as_pyplot_figure())
|
| 125 |
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
return gr.update(visible=True)
|
| 132 |
-
|
| 133 |
|
| 134 |
def activate_c(lang_pred):
|
| 135 |
langs = lang_pred.split('\n')
|
|
@@ -149,7 +161,7 @@ def activate_button(lang_pred):
|
|
| 149 |
return gr.update(visible=False)
|
| 150 |
else:
|
| 151 |
return gr.update(visible=True)
|
| 152 |
-
|
| 153 |
|
| 154 |
def lang_predict(code_txt):
|
| 155 |
res = {}
|
|
@@ -168,13 +180,14 @@ def lang_predict(code_txt):
|
|
| 168 |
|
| 169 |
# Define GUI
|
| 170 |
|
|
|
|
| 171 |
with gr.Blocks() as pragformer_gui:
|
| 172 |
|
| 173 |
gr.Markdown(
|
| 174 |
"""
|
| 175 |
# PragFormer Pragma Classifiction
|
| 176 |
-
|
| 177 |
-
Pragformer is a tool that analyzes C code to determine whether it would benefit from being placed in a
|
| 178 |
the use of data-sharing attribute clauses (e.g. private and reduction) to improve performance. It also provides explainability through the use of LIME.
|
| 179 |
""")
|
| 180 |
|
|
@@ -208,7 +221,9 @@ with gr.Blocks() as pragformer_gui:
|
|
| 208 |
reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)
|
| 209 |
|
| 210 |
explain_title = gr.Markdown("## LIME Explainability", visible=False)
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
code_in.change(fn=lang_predict, inputs=code_in, outputs=[lang_pred])
|
|
@@ -218,7 +233,9 @@ with gr.Blocks() as pragformer_gui:
|
|
| 218 |
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
| 219 |
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
| 220 |
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
| 221 |
-
submit_btn.click(fn=
|
|
|
|
|
|
|
| 222 |
submit_btn.click(fn=lime_title, inputs=code_in, outputs=explain_title)
|
| 223 |
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
| 224 |
|
|
@@ -255,12 +272,11 @@ with gr.Blocks() as pragformer_gui:
|
|
| 255 |
We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization
|
| 256 |
compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses.
|
| 257 |
|
| 258 |
-

|
| 261 |
|
| 262 |
|
| 263 |
|
| 264 |
-
|
| 265 |
pragformer_gui.launch()
|
| 266 |
|
|
|
|
| 17 |
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
| 18 |
|
| 19 |
|
| 20 |
+
# Event Listeners
|
| 21 |
with_omp_str = 'Should contain a parallel work-sharing loop construct'
|
| 22 |
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
| 23 |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
|
|
|
| 24 |
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
| 25 |
|
| 26 |
+
|
| 27 |
with open('c_data.json', 'r') as f:
|
| 28 |
data = json.load(f)
|
| 29 |
|
|
|
|
| 87 |
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
| 88 |
|
| 89 |
|
| 90 |
+
def get_predictor(model):
|
| 91 |
+
def predictor(texts):
|
| 92 |
+
tokenized = tokenizer.batch_encode_plus(
|
| 93 |
+
texts,
|
| 94 |
+
max_length = 150,
|
| 95 |
+
pad_to_max_length = True,
|
| 96 |
+
truncation = True
|
| 97 |
+
)
|
| 98 |
+
test_seq = torch.tensor(tokenized['input_ids'])
|
| 99 |
+
test_mask = torch.tensor(tokenized['attention_mask'])
|
| 100 |
+
test_y = torch.tensor([1]*len(texts))
|
| 101 |
+
test_data = TensorDataset(test_seq, test_mask, test_y)
|
| 102 |
+
test_sampler = SequentialSampler(test_seq)
|
| 103 |
+
test_dataloader = DataLoader(test_data, sampler = test_sampler, batch_size = len(texts))
|
| 104 |
+
total_probas = []
|
| 105 |
+
for step, batch in enumerate(test_dataloader):
|
| 106 |
+
sent_id, mask, labels = batch
|
| 107 |
+
outputs = model(sent_id, mask)
|
| 108 |
+
probas = outputs.detach().numpy()
|
| 109 |
+
total_probas.extend(probas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
return torch.nn.Softmax(dim=1)(torch.tensor(probas)).numpy()
|
|
|
|
| 112 |
|
| 113 |
+
return predictor
|
|
|
|
| 114 |
|
|
|
|
| 115 |
|
| 116 |
+
def get_lime_explain(filename):
|
| 117 |
+
def lime_explain(code_txt):
|
| 118 |
|
| 119 |
+
SAMPLES = 10 #40
|
| 120 |
+
exp = []
|
| 121 |
+
|
| 122 |
+
if filename == 'Loop':
|
| 123 |
+
model = pragformer
|
| 124 |
+
class_names = ['Without OpenMP', 'With OpenMP']
|
| 125 |
+
elif filename == 'Private':
|
| 126 |
+
model = pragformer_private
|
| 127 |
+
class_names = ['Without Private', 'With Private']
|
| 128 |
+
else:
|
| 129 |
+
model = pragformer_reduction
|
| 130 |
+
class_names = ['Without Reduction', 'With Reduction']
|
| 131 |
+
|
| 132 |
+
explainer = LimeTextExplainer(class_names=class_names, split_expression=r"\s+")
|
| 133 |
+
exp = explainer.explain_instance(code_txt, get_predictor(model), num_features=20, num_samples=SAMPLES)
|
| 134 |
+
|
| 135 |
+
exp.save_to_file(f'{filename.lower()}_explanation.html')
|
| 136 |
+
|
| 137 |
+
return gr.update(visible=True, value=f'{filename.lower()}_explanation.html')
|
| 138 |
|
| 139 |
+
return lime_explain
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def lime_title(code_txt):
|
| 143 |
return gr.update(visible=True)
|
| 144 |
+
|
| 145 |
|
| 146 |
def activate_c(lang_pred):
|
| 147 |
langs = lang_pred.split('\n')
|
|
|
|
| 161 |
return gr.update(visible=False)
|
| 162 |
else:
|
| 163 |
return gr.update(visible=True)
|
| 164 |
+
|
| 165 |
|
| 166 |
def lang_predict(code_txt):
|
| 167 |
res = {}
|
|
|
|
| 180 |
|
| 181 |
# Define GUI
|
| 182 |
|
| 183 |
+
|
| 184 |
with gr.Blocks() as pragformer_gui:
|
| 185 |
|
| 186 |
gr.Markdown(
|
| 187 |
"""
|
| 188 |
# PragFormer Pragma Classifiction
|
| 189 |
+
|
| 190 |
+
Pragformer is a tool that analyzes C code to determine whether it would benefit from being placed in a work-sharing loop construct and, if necessary, suggests
|
| 191 |
the use of data-sharing attribute clauses (e.g. private and reduction) to improve performance. It also provides explainability through the use of LIME.
|
| 192 |
""")
|
| 193 |
|
|
|
|
| 221 |
reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)
|
| 222 |
|
| 223 |
explain_title = gr.Markdown("## LIME Explainability", visible=False)
|
| 224 |
+
loop_explanation = gr.File(label='Work-sharing loop construct prediction explanation', interactive=False, visible=False)
|
| 225 |
+
private_explanation = gr.File(label='Data-sharing attribute private prediction explanation', interactive=False, visible=False)
|
| 226 |
+
reduction_explanation = gr.File(label='Data-sharing attribute reduction prediction explanation', interactive=False, visible=False)
|
| 227 |
|
| 228 |
|
| 229 |
code_in.change(fn=lang_predict, inputs=code_in, outputs=[lang_pred])
|
|
|
|
| 233 |
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
| 234 |
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
| 235 |
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
| 236 |
+
submit_btn.click(fn=get_lime_explain('Loop'), inputs=code_in, outputs=loop_explanation)
|
| 237 |
+
submit_btn.click(fn=get_lime_explain('Private'), inputs=code_in, outputs=private_explanation)
|
| 238 |
+
submit_btn.click(fn=get_lime_explain('Reduction'), inputs=code_in, outputs=reduction_explanation)
|
| 239 |
submit_btn.click(fn=lime_title, inputs=code_in, outputs=explain_title)
|
| 240 |
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
| 241 |
|
|
|
|
| 272 |
We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization
|
| 273 |
compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses.
|
| 274 |
|
| 275 |
+

|
| 276 |
+
|
| 277 |
""")
|
| 278 |
|
| 279 |
|
| 280 |
|
|
|
|
| 281 |
pragformer_gui.launch()
|
| 282 |
|