Spaces:
Build error
Build error
Commit
·
772e550
1
Parent(s):
7ec9afa
Update app.py
Browse files
app.py
CHANGED
@@ -18,84 +18,85 @@ with_omp_str = 'Should contain a parallel work-sharing loop construct'
|
|
18 |
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
19 |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
20 |
|
21 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
22 |
|
|
|
23 |
|
24 |
-
with open('c_data.json', 'r') as f:
|
25 |
data = json.load(f)
|
26 |
|
27 |
def fill_code(code_pth):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
def predict(code_txt):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
|
47 |
def is_private(code_txt):
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
|
67 |
def is_reduction(code_txt):
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
|
87 |
def lang_predict(code_txt):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
94 |
|
95 |
-
for
|
96 |
-
res[name_file[lang_idx.item()]] = conf.item()
|
97 |
|
98 |
-
return '\n'.join([f" {'V ' if k=='c' else 'X'}{k}: {v}" for k,v in res.items()])
|
99 |
|
100 |
|
101 |
# Define GUI
|
|
|
18 |
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
19 |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
20 |
|
|
|
21 |
|
22 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
23 |
|
24 |
+
with open('./HF_Pragformer/c_data.json', 'r') as f:
|
25 |
data = json.load(f)
|
26 |
|
27 |
def fill_code(code_pth):
|
28 |
+
pragma = data[code_pth]['pragma']
|
29 |
+
code = data[code_pth]['code']
|
30 |
+
return 'None' if len(pragma)==0 else pragma, code
|
31 |
+
|
32 |
|
33 |
def predict(code_txt):
|
34 |
+
code = code_txt.lstrip().rstrip()
|
35 |
+
tokenized = tokenizer.batch_encode_plus(
|
36 |
+
[code],
|
37 |
+
max_length = 150,
|
38 |
+
pad_to_max_length = True,
|
39 |
+
truncation = True
|
40 |
+
)
|
41 |
+
pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
42 |
|
43 |
+
y_hat = torch.argmax(pred).item()
|
44 |
+
return with_omp_str if y_hat==1 else without_omp_str, torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()
|
45 |
|
46 |
|
47 |
def is_private(code_txt):
|
48 |
+
if predict(code_txt)[0] == without_omp_str:
|
49 |
+
return gr.update(visible=False)
|
50 |
|
51 |
+
code = code_txt.lstrip().rstrip()
|
52 |
+
tokenized = tokenizer.batch_encode_plus(
|
53 |
+
[code],
|
54 |
+
max_length = 150,
|
55 |
+
pad_to_max_length = True,
|
56 |
+
truncation = True
|
57 |
+
)
|
58 |
+
pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
59 |
|
60 |
+
y_hat = torch.argmax(pred).item()
|
61 |
+
# if y_hat == 0:
|
62 |
+
# return gr.update(visible=False)
|
63 |
+
# else:
|
64 |
+
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain private with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
65 |
|
66 |
|
67 |
def is_reduction(code_txt):
|
68 |
+
if predict(code_txt)[0] == without_omp_str:
|
69 |
+
return gr.update(visible=False)
|
70 |
|
71 |
+
code = code_txt.lstrip().rstrip()
|
72 |
+
tokenized = tokenizer.batch_encode_plus(
|
73 |
+
[code],
|
74 |
+
max_length = 150,
|
75 |
+
pad_to_max_length = True,
|
76 |
+
truncation = True
|
77 |
+
)
|
78 |
+
pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
79 |
|
80 |
+
y_hat = torch.argmax(pred).item()
|
81 |
+
# if y_hat == 0:
|
82 |
+
# return gr.update(visible=False)
|
83 |
+
# else:
|
84 |
+
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
85 |
|
86 |
|
87 |
def lang_predict(code_txt):
|
88 |
+
res = {}
|
89 |
+
code = code_txt.replace('\n',' ').replace('\r',' ')
|
90 |
+
predictions, raw_outputs = deep_scc_model.predict([code])
|
91 |
+
# preds = [name_file[predictions[i]] for i in range(5)]
|
92 |
+
softmax_vals = torch.nn.Softmax(dim=1)(torch.tensor(raw_outputs))
|
93 |
+
top5 = torch.topk(softmax_vals, 5)
|
94 |
+
|
95 |
+
for lang_idx, conf in zip(top5.indices.flatten(), top5.values.flatten()):
|
96 |
+
res[name_file[lang_idx.item()]] = conf.item()
|
97 |
|
98 |
+
return '\n'.join([f" {'V ' if k=='c' else 'X'}{k}: {v}" for k,v in res.items()])
|
|
|
99 |
|
|
|
100 |
|
101 |
|
102 |
# Define GUI
|