Spaces:
Build error
Build error
Commit
·
6f94048
1
Parent(s):
c683650
Update app.py
Browse files
app.py
CHANGED
@@ -4,68 +4,68 @@ import torch
|
|
4 |
import json
|
5 |
|
6 |
# load all models
|
7 |
-
pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
8 |
-
pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
|
9 |
-
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
10 |
|
11 |
|
12 |
#Event Listeners
|
13 |
|
14 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
15 |
|
16 |
-
with open('c_data.json', 'r') as f:
|
17 |
-
|
18 |
|
19 |
-
def fill_code(code_pth):
|
20 |
-
|
21 |
|
22 |
|
23 |
-
def predict(code_txt):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
def is_private(code_txt):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
def is_reduction(code_txt):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
|
71 |
# Define GUI
|
@@ -118,10 +118,10 @@ with gr.Blocks() as pragformer_gui:
|
|
118 |
private = gr.Textbox(label="Private", visible=False)
|
119 |
reduction = gr.Textbox(label="Reduction", visible=False)
|
120 |
|
121 |
-
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
122 |
-
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
123 |
-
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
124 |
-
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
125 |
|
126 |
|
127 |
# pragformer_gui.launch()
|
|
|
4 |
import json
|
5 |
|
6 |
# load all models
|
7 |
+
# pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
8 |
+
# pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
|
9 |
+
# pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
10 |
|
11 |
|
12 |
#Event Listeners
|
13 |
|
14 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
15 |
|
16 |
+
# with open('c_data.json', 'r') as f:
|
17 |
+
# data = json.load(f)
|
18 |
|
19 |
+
# def fill_code(code_pth):
|
20 |
+
# return data[code_pth]['pragma'], data[code_pth]['code']
|
21 |
|
22 |
|
23 |
+
# def predict(code_txt):
|
24 |
+
# code = code_txt.lstrip().rstrip()
|
25 |
+
# tokenized = tokenizer.batch_encode_plus(
|
26 |
+
# [code],
|
27 |
+
# max_length = 150,
|
28 |
+
# pad_to_max_length = True,
|
29 |
+
# truncation = True
|
30 |
+
# )
|
31 |
+
# pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
32 |
+
|
33 |
+
# y_hat = torch.argmax(pred).item()
|
34 |
+
# return 'With OpenMP' if y_hat==1 else 'Without OpenMP', torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()
|
35 |
+
|
36 |
+
|
37 |
+
# def is_private(code_txt):
|
38 |
+
# code = code_txt.lstrip().rstrip()
|
39 |
+
# tokenized = tokenizer.batch_encode_plus(
|
40 |
+
# [code],
|
41 |
+
# max_length = 150,
|
42 |
+
# pad_to_max_length = True,
|
43 |
+
# truncation = True
|
44 |
+
# )
|
45 |
+
# pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
46 |
+
|
47 |
+
# y_hat = torch.argmax(pred).item()
|
48 |
+
# if y_hat == 0:
|
49 |
+
# return gr.update(visible=False)
|
50 |
+
# else:
|
51 |
+
# return gr.update(value=f"Confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
52 |
+
|
53 |
+
|
54 |
+
# def is_reduction(code_txt):
|
55 |
+
# code = code_txt.lstrip().rstrip()
|
56 |
+
# tokenized = tokenizer.batch_encode_plus(
|
57 |
+
# [code],
|
58 |
+
# max_length = 150,
|
59 |
+
# pad_to_max_length = True,
|
60 |
+
# truncation = True
|
61 |
+
# )
|
62 |
+
# pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
63 |
+
|
64 |
+
# y_hat = torch.argmax(pred).item()
|
65 |
+
# if y_hat == 0:
|
66 |
+
# return gr.update(visible=False)
|
67 |
+
# else:
|
68 |
+
# return gr.update(value=f"Confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
69 |
|
70 |
|
71 |
# Define GUI
|
|
|
118 |
private = gr.Textbox(label="Private", visible=False)
|
119 |
reduction = gr.Textbox(label="Reduction", visible=False)
|
120 |
|
121 |
+
# submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
122 |
+
# submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
123 |
+
# submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
124 |
+
# sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
125 |
|
126 |
|
127 |
# pragformer_gui.launch()
|