Spaces:
Build error
Build error
Commit
·
6f94048
1
Parent(s):
c683650
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,68 +4,68 @@ import torch
|
|
| 4 |
import json
|
| 5 |
|
| 6 |
# load all models
|
| 7 |
-
pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
| 8 |
-
pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
|
| 9 |
-
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
| 10 |
|
| 11 |
|
| 12 |
#Event Listeners
|
| 13 |
|
| 14 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
| 15 |
|
| 16 |
-
with open('c_data.json', 'r') as f:
|
| 17 |
-
|
| 18 |
|
| 19 |
-
def fill_code(code_pth):
|
| 20 |
-
|
| 21 |
|
| 22 |
|
| 23 |
-
def predict(code_txt):
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def is_private(code_txt):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def is_reduction(code_txt):
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
|
| 71 |
# Define GUI
|
|
@@ -118,10 +118,10 @@ with gr.Blocks() as pragformer_gui:
|
|
| 118 |
private = gr.Textbox(label="Private", visible=False)
|
| 119 |
reduction = gr.Textbox(label="Reduction", visible=False)
|
| 120 |
|
| 121 |
-
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
| 122 |
-
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
| 123 |
-
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
| 124 |
-
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
| 125 |
|
| 126 |
|
| 127 |
# pragformer_gui.launch()
|
|
|
|
| 4 |
import json
|
| 5 |
|
| 6 |
# load all models
|
| 7 |
+
# pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
| 8 |
+
# pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
|
| 9 |
+
# pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
| 10 |
|
| 11 |
|
| 12 |
#Event Listeners
|
| 13 |
|
| 14 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
| 15 |
|
| 16 |
+
# with open('c_data.json', 'r') as f:
|
| 17 |
+
# data = json.load(f)
|
| 18 |
|
| 19 |
+
# def fill_code(code_pth):
|
| 20 |
+
# return data[code_pth]['pragma'], data[code_pth]['code']
|
| 21 |
|
| 22 |
|
| 23 |
+
# def predict(code_txt):
|
| 24 |
+
# code = code_txt.lstrip().rstrip()
|
| 25 |
+
# tokenized = tokenizer.batch_encode_plus(
|
| 26 |
+
# [code],
|
| 27 |
+
# max_length = 150,
|
| 28 |
+
# pad_to_max_length = True,
|
| 29 |
+
# truncation = True
|
| 30 |
+
# )
|
| 31 |
+
# pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
| 32 |
+
|
| 33 |
+
# y_hat = torch.argmax(pred).item()
|
| 34 |
+
# return 'With OpenMP' if y_hat==1 else 'Without OpenMP', torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# def is_private(code_txt):
|
| 38 |
+
# code = code_txt.lstrip().rstrip()
|
| 39 |
+
# tokenized = tokenizer.batch_encode_plus(
|
| 40 |
+
# [code],
|
| 41 |
+
# max_length = 150,
|
| 42 |
+
# pad_to_max_length = True,
|
| 43 |
+
# truncation = True
|
| 44 |
+
# )
|
| 45 |
+
# pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
| 46 |
+
|
| 47 |
+
# y_hat = torch.argmax(pred).item()
|
| 48 |
+
# if y_hat == 0:
|
| 49 |
+
# return gr.update(visible=False)
|
| 50 |
+
# else:
|
| 51 |
+
# return gr.update(value=f"Confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# def is_reduction(code_txt):
|
| 55 |
+
# code = code_txt.lstrip().rstrip()
|
| 56 |
+
# tokenized = tokenizer.batch_encode_plus(
|
| 57 |
+
# [code],
|
| 58 |
+
# max_length = 150,
|
| 59 |
+
# pad_to_max_length = True,
|
| 60 |
+
# truncation = True
|
| 61 |
+
# )
|
| 62 |
+
# pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
| 63 |
+
|
| 64 |
+
# y_hat = torch.argmax(pred).item()
|
| 65 |
+
# if y_hat == 0:
|
| 66 |
+
# return gr.update(visible=False)
|
| 67 |
+
# else:
|
| 68 |
+
# return gr.update(value=f"Confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
| 69 |
|
| 70 |
|
| 71 |
# Define GUI
|
|
|
|
| 118 |
private = gr.Textbox(label="Private", visible=False)
|
| 119 |
reduction = gr.Textbox(label="Reduction", visible=False)
|
| 120 |
|
| 121 |
+
# submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
| 122 |
+
# submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
| 123 |
+
# submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
| 124 |
+
# sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
| 125 |
|
| 126 |
|
| 127 |
# pragformer_gui.launch()
|