Spaces:
Build error
Build error
Commit
·
094450f
1
Parent(s):
a7a7a33
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
import transformers
|
3 |
from simpletransformers.classification import ClassificationModel, ClassificationArgs
|
|
|
4 |
import torch
|
|
|
|
|
|
|
5 |
import json
|
6 |
|
|
|
7 |
# load all models
|
8 |
deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,use_multiprocessing=False)
|
9 |
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)
|
@@ -18,71 +22,127 @@ with_omp_str = 'Should contain a parallel work-sharing loop construct'
|
|
18 |
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
19 |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
20 |
|
21 |
-
|
22 |
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
23 |
|
24 |
with open('c_data.json', 'r') as f:
|
25 |
data = json.load(f)
|
26 |
|
27 |
def fill_code(code_pth):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
def predict(code_txt):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
|
47 |
def is_private(code_txt):
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
|
67 |
def is_reduction(code_txt):
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
tokenized = tokenizer.batch_encode_plus(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
# return gr.update(visible=False)
|
83 |
-
# else:
|
84 |
-
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def lang_predict(code_txt):
|
88 |
res = {}
|
@@ -120,9 +180,13 @@ with gr.Blocks() as pragformer_gui:
|
|
120 |
pragma = gr.Textbox(label="Original parallelization classification (if any)")
|
121 |
with gr.Row():
|
122 |
code_in = gr.Textbox(lines=5, label="Write some C code and see if it should contain a parallel work-sharing loop construct")
|
123 |
-
lang_pred = gr.Textbox(lines=5, label="
|
124 |
|
125 |
submit_btn = gr.Button("Submit")
|
|
|
|
|
|
|
|
|
126 |
with gr.Column():
|
127 |
gr.Markdown("## Results")
|
128 |
|
@@ -134,11 +198,17 @@ with gr.Blocks() as pragformer_gui:
|
|
134 |
private = gr.Textbox(label="Data-sharing attribute clause- private", visible=False)
|
135 |
reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
140 |
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
141 |
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
|
|
142 |
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
143 |
|
144 |
gr.Markdown(
|
@@ -179,5 +249,7 @@ with gr.Blocks() as pragformer_gui:
|
|
179 |
""")
|
180 |
|
181 |
|
|
|
|
|
182 |
pragformer_gui.launch()
|
183 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from simpletransformers.classification import ClassificationModel, ClassificationArgs
|
3 |
+
from lime.lime_text import LimeTextExplainer
|
4 |
import torch
|
5 |
+
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
6 |
+
import re
|
7 |
+
import transformers
|
8 |
import json
|
9 |
|
10 |
+
|
11 |
# load all models
|
12 |
deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,use_multiprocessing=False)
|
13 |
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)
|
|
|
22 |
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
23 |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
24 |
|
|
|
25 |
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
26 |
|
27 |
with open('c_data.json', 'r') as f:
|
28 |
data = json.load(f)
|
29 |
|
30 |
def fill_code(code_pth):
|
31 |
+
pragma = data[code_pth]['pragma']
|
32 |
+
code = data[code_pth]['code']
|
33 |
+
return 'None' if len(pragma)==0 else pragma, code
|
34 |
+
|
35 |
|
36 |
def predict(code_txt):
|
37 |
+
code = code_txt.lstrip().rstrip()
|
38 |
+
tokenized = tokenizer.batch_encode_plus(
|
39 |
+
[code],
|
40 |
+
max_length = 150,
|
41 |
+
pad_to_max_length = True,
|
42 |
+
truncation = True
|
43 |
+
)
|
44 |
+
pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
45 |
|
46 |
+
y_hat = torch.argmax(pred).item()
|
47 |
+
return with_omp_str if y_hat==1 else without_omp_str, torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()
|
48 |
|
49 |
|
50 |
def is_private(code_txt):
|
51 |
+
if predict(code_txt)[0] == without_omp_str:
|
52 |
+
return gr.update(visible=False)
|
53 |
|
54 |
+
code = code_txt.lstrip().rstrip()
|
55 |
+
tokenized = tokenizer.batch_encode_plus(
|
56 |
+
[code],
|
57 |
+
max_length = 150,
|
58 |
+
pad_to_max_length = True,
|
59 |
+
truncation = True
|
60 |
+
)
|
61 |
+
pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
62 |
|
63 |
+
y_hat = torch.argmax(pred).item()
|
64 |
+
# if y_hat == 0:
|
65 |
+
# return gr.update(visible=False)
|
66 |
+
# else:
|
67 |
+
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain private with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
68 |
|
69 |
|
70 |
def is_reduction(code_txt):
|
71 |
+
if predict(code_txt)[0] == without_omp_str:
|
72 |
+
return gr.update(visible=False)
|
73 |
+
|
74 |
+
code = code_txt.lstrip().rstrip()
|
75 |
+
tokenized = tokenizer.batch_encode_plus(
|
76 |
+
[code],
|
77 |
+
max_length = 150,
|
78 |
+
pad_to_max_length = True,
|
79 |
+
truncation = True
|
80 |
+
)
|
81 |
+
pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
82 |
+
|
83 |
+
y_hat = torch.argmax(pred).item()
|
84 |
+
# if y_hat == 0:
|
85 |
+
# return gr.update(visible=False)
|
86 |
+
# else:
|
87 |
+
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
88 |
+
|
89 |
+
|
90 |
+
def predictor(texts):
|
91 |
tokenized = tokenizer.batch_encode_plus(
|
92 |
+
texts,
|
93 |
+
max_length = 150,
|
94 |
+
pad_to_max_length = True,
|
95 |
+
truncation = True
|
96 |
+
)
|
97 |
+
test_seq = torch.tensor(tokenized['input_ids'])
|
98 |
+
test_mask = torch.tensor(tokenized['attention_mask'])
|
99 |
+
test_y = torch.tensor([1]*len(texts))
|
100 |
+
test_data = TensorDataset(test_seq, test_mask, test_y)
|
101 |
+
test_sampler = SequentialSampler(test_seq)
|
102 |
+
test_dataloader = DataLoader(test_data, sampler = test_sampler, batch_size = len(texts))
|
103 |
+
total_probas = []
|
104 |
+
for step, batch in enumerate(test_dataloader):
|
105 |
+
sent_id, mask, labels = batch
|
106 |
+
outputs = pragformer(sent_id, mask)
|
107 |
+
probas = outputs.detach().numpy()
|
108 |
+
total_probas.extend(probas)
|
109 |
+
|
110 |
+
return torch.nn.Softmax(dim=1)(torch.tensor(probas)).numpy()
|
111 |
+
|
112 |
+
|
113 |
+
def lime_explain(code_txt):
|
114 |
+
class_names = ['Without OpenMP', 'With OpenMP']
|
115 |
+
SAMPLES = 40
|
116 |
+
exp = []
|
117 |
|
118 |
+
if predict(code_txt)[0] == without_omp_str:
|
119 |
+
return gr.update(visible=False)
|
|
|
|
|
|
|
120 |
|
121 |
+
explainer = LimeTextExplainer(class_names=class_names, split_expression=r"\s+")
|
122 |
+
exp = explainer.explain_instance(code_txt, predictor, num_features=20, num_samples=SAMPLES)
|
123 |
+
|
124 |
+
return gr.update(visible=True, value=exp.as_pyplot_figure())
|
125 |
+
|
126 |
+
|
127 |
+
def activate_c(lang_pred):
|
128 |
+
langs = lang_pred.split('\n')
|
129 |
+
langs = {lang[5:lang.find(':')]:float(lang[lang.find(':')+1:]) for lang in langs}
|
130 |
+
|
131 |
+
if any([lang in langs for lang in ['c', 'c++', 'c#']]) and any([val > 0.15 for val in langs.values()]):
|
132 |
+
return gr.update(visible=True)
|
133 |
+
else:
|
134 |
+
return gr.update(visible=False)
|
135 |
+
|
136 |
+
|
137 |
+
def activate_button(lang_pred):
|
138 |
+
langs = lang_pred.split('\n')
|
139 |
+
langs = {lang[5:lang.find(':')]:float(lang[lang.find(':')+1:]) for lang in langs}
|
140 |
+
|
141 |
+
if any([lang in langs for lang in ['c', 'c++', 'c#']]) and any([val > 0.15 for val in langs.values()]):
|
142 |
+
return gr.update(visible=False)
|
143 |
+
else:
|
144 |
+
return gr.update(visible=True)
|
145 |
+
|
146 |
|
147 |
def lang_predict(code_txt):
|
148 |
res = {}
|
|
|
180 |
pragma = gr.Textbox(label="Original parallelization classification (if any)")
|
181 |
with gr.Row():
|
182 |
code_in = gr.Textbox(lines=5, label="Write some C code and see if it should contain a parallel work-sharing loop construct")
|
183 |
+
lang_pred = gr.Textbox(lines=5, label="DeepScc programming language prediction (only codes written in a C-like syntax will be executed)")
|
184 |
|
185 |
submit_btn = gr.Button("Submit")
|
186 |
+
err_msg = gr.Markdown("""
|
187 |
+
<div style='text-align: center;''>
|
188 |
+
<span style='color:red'>According to the DeepSCC prediction, the code language is not of a C-like syntax</span>
|
189 |
+
</div>""", visible=False)
|
190 |
with gr.Column():
|
191 |
gr.Markdown("## Results")
|
192 |
|
|
|
198 |
private = gr.Textbox(label="Data-sharing attribute clause- private", visible=False)
|
199 |
reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)
|
200 |
|
201 |
+
explanation = gr.Plot(visible=False)
|
202 |
+
|
203 |
+
|
204 |
+
code_in.change(fn=lang_predict, inputs=code_in, outputs=[lang_pred])
|
205 |
+
lang_pred.change(fn=activate_c, inputs=lang_pred, outputs=submit_btn)
|
206 |
+
lang_pred.change(fn=activate_button, inputs=lang_pred, outputs=err_msg)
|
207 |
|
208 |
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
209 |
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
210 |
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
211 |
+
submit_btn.click(fn=lime_explain, inputs=code_in, outputs=explanation)
|
212 |
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
213 |
|
214 |
gr.Markdown(
|
|
|
249 |
""")
|
250 |
|
251 |
|
252 |
+
|
253 |
+
|
254 |
pragformer_gui.launch()
|
255 |
|