File size: 9,556 Bytes
2993f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import osail_utils
import pandas as pd 
import skimage
from mediffusion import DiffusionModule
import monai as mn
import torch

# Loading the model for inference

model = DiffusionModule("./diffusion_configs.yaml")
model.load_ckpt("./data/model.ckpt")
model.cuda().half()
model.eval();

# Loading a baseline noise for making predictions

seed = 3407
np.random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
BASELINE_NOISE = torch.randn(1, 1, 256, 256).cuda().half()

# Model helper functions

def create_ds(img_paths):
    if type(img_paths) == str:
        img_paths = [img_paths]
    data_list = [{"img": img_path} for img_path in img_paths]
        
    # Get the transforms            
    Ts_list = [
            osail_utils.io.LoadImageD(keys=["img"], transpose=True, normalize=True),
            mn.transforms.EnsureChannelFirstD(
                keys=["img"], channel_dim="no_channel"
            ),
            mn.transforms.ResizeD(
                keys=["img"],
                spatial_size=(256, 256),
                mode=["bicubic"],
            ),
            mn.transforms.ScaleIntensityD(keys=["img"], minv=0, maxv=1),
            mn.transforms.ToTensorD(keys=["img"], track_meta=None),
            mn.transforms.SelectItemsD(keys=["img"]),
        ]
    return mn.data.Dataset(data_list, transform=mn.transforms.Compose(Ts_list))

def make_predictions(img_path, angles=None, cls_batch=None, rotate_to_standard=False, sampler="DDIM100"):
    
    global model
    global BASELINE_NOISE
    
    # Create the image dataset
    if cls_batch is not None:
        ds = create_ds([img_path]*len(cls_batch))
    else:
        ds = create_ds(img_path)
    dl = mn.data.DataLoader(ds, batch_size=len(ds), num_workers=0 if len(ds)==1 else 4, shuffle=False)
    input_batch = next(iter(dl))
    original_imgs = input_batch["img"].detach().cpu().numpy()
    
    # Create the classifier condition if not provided
    if cls_batch is None:
        fp = torch.zeros(768)
        if rotate_to_standard or angles is None:
            angles = [1000, 1000, 1000]
            cls_value = torch.tensor([2, *angles, *fp])
        else:
            cls_value = torch.tensor([1, *angles, *fp])
        cls_batch = cls_value.unsqueeze(0).repeat(input_batch["img"].shape[0], 1).cuda().half()

    # Generate noise
    noise = BASELINE_NOISE.repeat(input_batch["img"].shape[0], 1, 1, 1)
    model_kwargs = {
        "cls": cls_batch,
        "concat": input_batch["img"].cuda().half(),
    }
    
    # Make predictions
    preds = model.predict(
        noise, model_kwargs=model_kwargs, classifier_cond_scale=4, inference_protocol=sampler 
    )
    adjusted_preds = list()
    for pred, original_img in zip(preds, original_imgs):
        adjusted_pred = pred.detach().cpu().numpy().squeeze()
        original_img = original_img.squeeze()
        adjusted_pred = skimage.exposure.match_histograms(adjusted_pred, original_img)
        adjusted_preds.append(adjusted_pred)
    return adjusted_preds

# Gradio helper functions

current_img = None
live_preds = None

def rotate_btn_fn(img_path, xt, yt, zt, add_bone_cmap=False):
    
    global current_img
    
    angles = [float(xt), float(yt), float(zt)]
    out_img = make_predictions(img_path, angles)[0]
    if not add_bone_cmap:
        print(out_img.shape)
        return out_img
    cmap = plt.get_cmap('bone')
    out_img = cmap(out_img)
    out_img = (out_img[..., :3] * 255).astype(np.uint8)
    current_img = out_img
    return out_img
    
def rotate_to_standard_btn_fn(img_path, add_bone_cmap=False):
    
    global current_img
    
    out_img = make_predictions(img_path, rotate_to_standard=True)[0]
    if not add_bone_cmap:
        return out_img
    cmap = plt.get_cmap('bone')
    out_img = cmap(out_img)
    out_img = (out_img[..., :3] * 255).astype(np.uint8)
    current_img = out_img
    return out_img

def use_current_btn_fn(input_img):
    return input_img


def make_live_btn_fn(img_path, axis, add_bone_cmap=False):
    
    global live_preds
    
    base_angles = list(range(-20, 21, 1))
    base_angles = [float(i) for i in base_angles]
    if axis.lower() == "axis x":
        all_angles = [[i, 0, 0] for i in base_angles]
    elif axis.lower() == "axis y":
        all_angles = [[0, i, 0] for i in base_angles]
    elif axis.lower() == "axis z":
        all_angles = [[0, 0, i] for i in base_angles]
    fp = torch.zeros(768)
    cls_batch = torch.tensor([[1, *angles, *fp] for angles in all_angles])
    
    live_preds = make_predictions(img_path, cls_batch=cls_batch)
    live_preds = {angle: live_preds[i] for i, angle in enumerate(base_angles)}
    return img_path    
    
def rotate_live_img_fn(angle, add_bone_cmap=False):
    
    global live_img
    global live_preds
    
    if live_img is not None:
        if angle == 0:
            return live_img
        return live_preds[float(angle)]
    
css_style = "./style.css"
callback = gr.CSVLogger()
with gr.Blocks(css=css_style) as app:
    gr.HTML("VCNet: A Deep Learning Solution for Roating RadioGraphs in 3D Space", elem_classes="title")
    gr.HTML("Developed by the Orthopedics Surgery Artificial Intelligence Lab (OSAIL)", elem_classes="note")
    gr.HTML("Note: This is a proof-of-concept demo of an AI tool that is not yet finalized. Please interpret with care!", elem_classes="note")
    
    with gr.TabItem("Single Rotation"):
        with gr.Row():
            input_img = gr.Image(type='filepath', label='Input image', sources='upload', interactive=False, elem_classes='imgs')
            output_img = gr.Image(type='pil', label='Output image', interactive=False, elem_classes='imgs')
        with gr.Row():
            gr.Examples(
                examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "xr" in f], 
                inputs = [input_img],
                label = "Xray Examples",
                elem_id='examples'
            )
            gr.Examples(
                examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "drr" in f], 
                inputs = [input_img],
                label = "DRR Examples",
                elem_id='examples'
            )
        with gr.Row():
            gr.Markdown('Please select an example image, choose your rotation angles, and press Rotate!', elem_classes='text')
        with gr.Row():
            with gr.Column(scale=1):
                xt = gr.Slider(label='Rotation angle in x axis:', elem_classes='angle', value=0, minimum=-20, maximum=20, step=1)
            with gr.Column(scale=1):
                yt = gr.Slider(label='Rotation angle in y axis:', elem_classes='angle', value=0, minimum=-20, maximum=20, step=1)
            with gr.Column(scale=1):
                zt = gr.Slider(label='Rotation angle in z axis:', elem_classes='angle', value=0, minimum=-20, maximum=20, step=1)
        with gr.Row():
            rotate_btn = gr.Button("Rotate!", elem_classes='rotate_button')
        with gr.Row():
            rotate_to_standard_btn = gr.Button("Rotate to standard view!", elem_classes='rotate_to_standard_button')
        with gr.Row():
            use_current_btn = gr.Button("Use the current output as the new input!", elem_classes='use_current_button')
        rotate_btn.click(fn=rotate_btn_fn, inputs=[input_img, xt, yt, zt], outputs=output_img)
        rotate_to_standard_btn.click(fn=rotate_to_standard_btn_fn, inputs=[input_img], outputs=output_img)
        use_current_btn.click(fn=use_current_btn_fn, inputs=[output_img], outputs=input_img)
    
    with gr.TabItem("Live Rotation"):
        with gr.Row():
            live_img = gr.Image(type='filepath', label='Live Image', sources='upload', interactive=False, elem_classes='imgs')
        with gr.Row():
            gr.Examples(
                examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "xr" in f], 
                inputs = [live_img],
                label = "Xray Examples",
                elem_id='examples'
            )
            gr.Examples(
                examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "drr" in f], 
                inputs = [live_img],
                label = "DRR Examples",
                elem_id='examples'
            )
        with gr.Row():
            gr.Markdown('Please select an example image, an axis, and then press Make Live!', elem_classes='text')
        with gr.Row():
            axis = gr.Dropdown(choices=['Axis X', 'Axis Y', 'Axis Z'], show_label=False, elem_classes='angle', value='Axis X')
            live_btn = gr.Button("Make Live!", elem_classes='make_live_button')
        with gr.Row():
             gr.Markdown('You can now rotate the radiograph in your selected axis using the scaler.', elem_classes='text')
        with gr.Row():
             slider = gr.Slider(show_label=False, minimum=-20, maximum=20, step=1, value=0, elem_classes='slider', interactive=True)
        live_btn.click(fn=make_live_btn_fn, inputs=[live_img, axis], outputs=live_img)
        slider.change(fn=rotate_live_img_fn, inputs=[slider], outputs=live_img)
        
try:
    app.close()
    gr.close_all()
except:
    pass

demo = app.launch(
    max_threads=4,
    share=True,
    inline=False,
    show_api=False,
    show_error=True,
    server_port=1902,
    server_name="0.0.0.0",
)