Spaces:
Running
Running
| # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from tqdm.auto import tqdm | |
| import os, argparse, datetime, math | |
| import logging | |
| from omegaconf import OmegaConf | |
| import shutil | |
| from latentsync.data.syncnet_dataset import SyncNetDataset | |
| from latentsync.models.syncnet import SyncNet | |
| from latentsync.models.syncnet_wav2lip import SyncNetWav2Lip | |
| from latentsync.utils.util import gather_loss, plot_loss_chart | |
| from accelerate.utils import set_seed | |
| import torch | |
| from diffusers import AutoencoderKL | |
| from diffusers.utils.logging import get_logger | |
| from einops import rearrange | |
| import torch.distributed as dist | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.utils.data.distributed import DistributedSampler | |
| from latentsync.utils.util import init_dist, cosine_loss | |
| logger = get_logger(__name__) | |
| def main(config): | |
| # Initialize distributed training | |
| local_rank = init_dist() | |
| global_rank = dist.get_rank() | |
| num_processes = dist.get_world_size() | |
| is_main_process = global_rank == 0 | |
| seed = config.run.seed + global_rank | |
| set_seed(seed) | |
| # Logging folder | |
| folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S") | |
| output_dir = os.path.join(config.data.train_output_dir, folder_name) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| # Handle the output folder creation | |
| if is_main_process: | |
| os.makedirs(output_dir, exist_ok=True) | |
| os.makedirs(f"{output_dir}/checkpoints", exist_ok=True) | |
| os.makedirs(f"{output_dir}/loss_charts", exist_ok=True) | |
| shutil.copy(config.config_path, output_dir) | |
| device = torch.device(local_rank) | |
| if config.data.latent_space: | |
| vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) | |
| vae.requires_grad_(False) | |
| vae.to(device) | |
| else: | |
| vae = None | |
| # Dataset and Dataloader setup | |
| train_dataset = SyncNetDataset(config.data.train_data_dir, config.data.train_fileslist, config) | |
| val_dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config) | |
| train_distributed_sampler = DistributedSampler( | |
| train_dataset, | |
| num_replicas=num_processes, | |
| rank=global_rank, | |
| shuffle=True, | |
| seed=config.run.seed, | |
| ) | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=config.data.batch_size, | |
| shuffle=False, | |
| sampler=train_distributed_sampler, | |
| num_workers=config.data.num_workers, | |
| pin_memory=False, | |
| drop_last=True, | |
| worker_init_fn=train_dataset.worker_init_fn, | |
| ) | |
| num_samples_limit = 640 | |
| val_batch_size = min( | |
| num_samples_limit // config.data.num_frames, config.data.batch_size | |
| ) # limit batch size to avoid CUDA OOM | |
| val_dataloader = torch.utils.data.DataLoader( | |
| val_dataset, | |
| batch_size=val_batch_size, | |
| shuffle=False, | |
| num_workers=config.data.num_workers, | |
| pin_memory=False, | |
| drop_last=False, | |
| worker_init_fn=val_dataset.worker_init_fn, | |
| ) | |
| # Model | |
| syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device) | |
| # syncnet = SyncNetWav2Lip().to(device) | |
| optimizer = torch.optim.AdamW( | |
| list(filter(lambda p: p.requires_grad, syncnet.parameters())), lr=config.optimizer.lr | |
| ) | |
| if config.ckpt.resume_ckpt_path != "": | |
| if is_main_process: | |
| logger.info(f"Load checkpoint from: {config.ckpt.resume_ckpt_path}") | |
| ckpt = torch.load(config.ckpt.resume_ckpt_path, map_location=device) | |
| syncnet.load_state_dict(ckpt["state_dict"]) | |
| global_step = ckpt["global_step"] | |
| train_step_list = ckpt["train_step_list"] | |
| train_loss_list = ckpt["train_loss_list"] | |
| val_step_list = ckpt["val_step_list"] | |
| val_loss_list = ckpt["val_loss_list"] | |
| else: | |
| global_step = 0 | |
| train_step_list = [] | |
| train_loss_list = [] | |
| val_step_list = [] | |
| val_loss_list = [] | |
| # DDP wrapper | |
| syncnet = DDP(syncnet, device_ids=[local_rank], output_device=local_rank) | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader)) | |
| num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch) | |
| # validation_steps = int(config.ckpt.save_ckpt_steps // 5) | |
| # validation_steps = 100 | |
| if is_main_process: | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {config.data.batch_size}") | |
| logger.info(f" Total train batch size (w. parallel & distributed) = {config.data.batch_size * num_processes}") | |
| logger.info(f" Total optimization steps = {config.run.max_train_steps}") | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| num_val_batches = config.data.num_val_samples // (num_processes * config.data.batch_size) | |
| # Only show the progress bar once on each machine. | |
| progress_bar = tqdm( | |
| range(0, config.run.max_train_steps), initial=global_step, desc="Steps", disable=not is_main_process | |
| ) | |
| # Support mixed-precision training | |
| scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None | |
| for epoch in range(first_epoch, num_train_epochs): | |
| train_dataloader.sampler.set_epoch(epoch) | |
| syncnet.train() | |
| for step, batch in enumerate(train_dataloader): | |
| ### >>>> Training >>>> ### | |
| frames = batch["frames"].to(device, dtype=torch.float16) | |
| audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) | |
| y = batch["y"].to(device, dtype=torch.float32) | |
| if config.data.latent_space: | |
| max_batch_size = ( | |
| num_samples_limit // config.data.num_frames | |
| ) # due to the limited cuda memory, we split the input frames into parts | |
| if frames.shape[0] > max_batch_size: | |
| assert ( | |
| frames.shape[0] % max_batch_size == 0 | |
| ), f"max_batch_size {max_batch_size} should be divisible by batch_size {frames.shape[0]}" | |
| frames_part_results = [] | |
| for i in range(0, frames.shape[0], max_batch_size): | |
| frames_part = frames[i : i + max_batch_size] | |
| frames_part = rearrange(frames_part, "b f c h w -> (b f) c h w") | |
| with torch.no_grad(): | |
| frames_part = vae.encode(frames_part).latent_dist.sample() * 0.18215 | |
| frames_part_results.append(frames_part) | |
| frames = torch.cat(frames_part_results, dim=0) | |
| else: | |
| frames = rearrange(frames, "b f c h w -> (b f) c h w") | |
| with torch.no_grad(): | |
| frames = vae.encode(frames).latent_dist.sample() * 0.18215 | |
| frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames) | |
| else: | |
| frames = rearrange(frames, "b f c h w -> b (f c) h w") | |
| if config.data.lower_half: | |
| height = frames.shape[2] | |
| frames = frames[:, :, height // 2 :, :] | |
| # audio_embeds = wav2vec_encoder(audio_samples).last_hidden_state | |
| # Mixed-precision training | |
| with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training): | |
| vision_embeds, audio_embeds = syncnet(frames, audio_samples) | |
| loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean() | |
| optimizer.zero_grad() | |
| # Backpropagate | |
| if config.run.mixed_precision_training: | |
| scaler.scale(loss).backward() | |
| """ >>> gradient clipping >>> """ | |
| scaler.unscale_(optimizer) | |
| torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm) | |
| """ <<< gradient clipping <<< """ | |
| scaler.step(optimizer) | |
| scaler.update() | |
| else: | |
| loss.backward() | |
| """ >>> gradient clipping >>> """ | |
| torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm) | |
| """ <<< gradient clipping <<< """ | |
| optimizer.step() | |
| progress_bar.update(1) | |
| global_step += 1 | |
| global_average_loss = gather_loss(loss, device) | |
| train_step_list.append(global_step) | |
| train_loss_list.append(global_average_loss) | |
| if is_main_process and global_step % config.run.validation_steps == 0: | |
| logger.info(f"Validation at step {global_step}") | |
| val_loss = validation( | |
| val_dataloader, | |
| device, | |
| syncnet, | |
| cosine_loss, | |
| config.data.latent_space, | |
| config.data.lower_half, | |
| vae, | |
| num_val_batches, | |
| ) | |
| val_step_list.append(global_step) | |
| val_loss_list.append(val_loss) | |
| logger.info(f"Validation loss at step {global_step} is {val_loss:0.3f}") | |
| if is_main_process and global_step % config.ckpt.save_ckpt_steps == 0: | |
| checkpoint_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt") | |
| torch.save( | |
| { | |
| "state_dict": syncnet.module.state_dict(), # to unwrap DDP | |
| "global_step": global_step, | |
| "train_step_list": train_step_list, | |
| "train_loss_list": train_loss_list, | |
| "val_step_list": val_step_list, | |
| "val_loss_list": val_loss_list, | |
| }, | |
| checkpoint_save_path, | |
| ) | |
| logger.info(f"Saved checkpoint to {checkpoint_save_path}") | |
| plot_loss_chart( | |
| os.path.join(output_dir, f"loss_charts/loss_chart-{global_step}.png"), | |
| ("Train loss", train_step_list, train_loss_list), | |
| ("Val loss", val_step_list, val_loss_list), | |
| ) | |
| progress_bar.set_postfix({"step_loss": global_average_loss}) | |
| if global_step >= config.run.max_train_steps: | |
| break | |
| progress_bar.close() | |
| dist.destroy_process_group() | |
| def validation(val_dataloader, device, syncnet, cosine_loss, latent_space, lower_half, vae, num_val_batches): | |
| syncnet.eval() | |
| losses = [] | |
| val_step = 0 | |
| while True: | |
| for step, batch in enumerate(val_dataloader): | |
| ### >>>> Validation >>>> ### | |
| frames = batch["frames"].to(device, dtype=torch.float16) | |
| audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) | |
| y = batch["y"].to(device, dtype=torch.float32) | |
| if latent_space: | |
| num_frames = frames.shape[1] | |
| frames = rearrange(frames, "b f c h w -> (b f) c h w") | |
| frames = vae.encode(frames).latent_dist.sample() * 0.18215 | |
| frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=num_frames) | |
| else: | |
| frames = rearrange(frames, "b f c h w -> b (f c) h w") | |
| if lower_half: | |
| height = frames.shape[2] | |
| frames = frames[:, :, height // 2 :, :] | |
| with torch.autocast(device_type="cuda", dtype=torch.float16): | |
| vision_embeds, audio_embeds = syncnet(frames, audio_samples) | |
| loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean() | |
| losses.append(loss.item()) | |
| val_step += 1 | |
| if val_step > num_val_batches: | |
| syncnet.train() | |
| if len(losses) == 0: | |
| raise RuntimeError("No validation data") | |
| return sum(losses) / len(losses) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Code to train the expert lip-sync discriminator") | |
| parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_vae.yaml") | |
| args = parser.parse_args() | |
| # Load a configuration file | |
| config = OmegaConf.load(args.config_path) | |
| config.config_path = args.config_path | |
| main(config) | |