import pandas as pd from arango import ArangoClient from tqdm import tqdm import numpy as np import itertools import requests import sys import oasis from arango import ArangoClient import torch import torch.nn.functional as F from torch.nn import Linear from arango import ArangoClient import torch_geometric.transforms as T from torch_geometric.nn import SAGEConv, to_hetero from torch_geometric.transforms import RandomLinkSplit, ToUndirected from sentence_transformers import SentenceTransformer from torch_geometric.data import HeteroData import yaml #------------------------------------------------------------------------------------------- # Functions # performs user and movie mappings def node_mappings(path, index_col): df = pd.read_csv(path, index_col=index_col) mapping = {index: i for i, index in enumerate(df.index.unique())} return mapping def convert_int(x): try: return int(x) except: return np.nan def remove_movies(m_id): ''' # Remove ids which dont have meta data information ''' no_metadata = [] for idx in range(len(m_id)): tmdb_id = id_map.loc[id_map['movieId'] == m_id[idx]] if tmdb_id.size == 0: no_metadata.append(m_id[idx]) #print('No Meta data information at:', m_id[idx]) return no_metadata #------------------------------------------------------------------------------------------- def make_graph(): metadata_path = './sampled_movie_dataset/movies_metadata.csv' df = pd.read_csv(metadata_path) df = df.drop([19730, 29503, 35587]) df['id'] = df['id'].astype('int') links_small = pd.read_csv('./sampled_movie_dataset/links_small.csv') links_small = links_small[links_small['tmdbId'].notnull()]['tmdbId'].astype('int') # selecting tmdbId coloumn from links_small file sampled_md = df[df['id'].isin(links_small)] sampled_md['tagline'] = sampled_md['tagline'].fillna('') sampled_md['description'] = sampled_md['overview'] + sampled_md['tagline'] sampled_md['description'] = sampled_md['description'].fillna('') sampled_md = sampled_md.reset_index() indices = pd.Series(sampled_md.index, index=sampled_md['title']) ind_gen = pd.Series(sampled_md.index, index=sampled_md['genres']) ratings_path = './sampled_movie_dataset/ratings_small.csv' ratings_df = pd.read_csv(ratings_path) m_id = ratings_df['movieId'].tolist() m_id = list(dict.fromkeys(m_id)) user_mapping = node_mappings(ratings_path, index_col='userId') movie_mapping = node_mappings(ratings_path, index_col='movieId') id_map = pd.read_csv('./sampled_movie_dataset/links_small.csv')[['movieId', 'tmdbId']] id_map['tmdbId'] = id_map['tmdbId'].apply(convert_int) id_map.columns = ['movieId', 'id'] id_map = id_map.merge(sampled_md[['title', 'id']], on='id').set_index('title') # tmbdid is same (of links_small) as of id in sampled_md indices_map = id_map.set_index('id') no_metadata = remove_movies(m_id) ## remove ids which dont have meta data information for element in no_metadata: if element in m_id: print("ids with no metadata information:",element) m_id.remove(element) # create new movie_mapping dict with only m_ids having metadata information movie_mappings = {} for idx, m in enumerate(m_id): movie_mappings[m] = idx return movie_mappings def load_data_to_ArangoDB():