Create logic.py
Browse files
logic.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from arango import ArangoClient
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import numpy as np
|
| 5 |
+
import itertools
|
| 6 |
+
import requests
|
| 7 |
+
import sys
|
| 8 |
+
import oasis
|
| 9 |
+
from arango import ArangoClient
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.nn import Linear
|
| 14 |
+
from arango import ArangoClient
|
| 15 |
+
import torch_geometric.transforms as T
|
| 16 |
+
from torch_geometric.nn import SAGEConv, to_hetero
|
| 17 |
+
from torch_geometric.transforms import RandomLinkSplit, ToUndirected
|
| 18 |
+
from sentence_transformers import SentenceTransformer
|
| 19 |
+
from torch_geometric.data import HeteroData
|
| 20 |
+
import yaml
|
| 21 |
+
|
| 22 |
+
#-------------------------------------------------------------------------------------------
|
| 23 |
+
# Functions
|
| 24 |
+
|
| 25 |
+
# performs user and movie mappings
|
| 26 |
+
def node_mappings(path, index_col):
|
| 27 |
+
df = pd.read_csv(path, index_col=index_col)
|
| 28 |
+
mapping = {index: i for i, index in enumerate(df.index.unique())}
|
| 29 |
+
|
| 30 |
+
return mapping
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def convert_int(x):
|
| 34 |
+
try:
|
| 35 |
+
return int(x)
|
| 36 |
+
except:
|
| 37 |
+
return np.nan
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def remove_movies(m_id):
|
| 41 |
+
'''
|
| 42 |
+
# Remove ids which dont have meta data information
|
| 43 |
+
'''
|
| 44 |
+
no_metadata = []
|
| 45 |
+
for idx in range(len(m_id)):
|
| 46 |
+
tmdb_id = id_map.loc[id_map['movieId'] == m_id[idx]]
|
| 47 |
+
|
| 48 |
+
if tmdb_id.size == 0:
|
| 49 |
+
no_metadata.append(m_id[idx])
|
| 50 |
+
#print('No Meta data information at:', m_id[idx])
|
| 51 |
+
return no_metadata
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
#-------------------------------------------------------------------------------------------
|
| 55 |
+
|
| 56 |
+
def make_graph():
|
| 57 |
+
metadata_path = './sampled_movie_dataset/movies_metadata.csv'
|
| 58 |
+
df = pd.read_csv(metadata_path)
|
| 59 |
+
df = df.drop([19730, 29503, 35587])
|
| 60 |
+
df['id'] = df['id'].astype('int')
|
| 61 |
+
|
| 62 |
+
links_small = pd.read_csv('./sampled_movie_dataset/links_small.csv')
|
| 63 |
+
links_small = links_small[links_small['tmdbId'].notnull()]['tmdbId'].astype('int') # selecting tmdbId coloumn from links_small file
|
| 64 |
+
|
| 65 |
+
sampled_md = df[df['id'].isin(links_small)]
|
| 66 |
+
sampled_md['tagline'] = sampled_md['tagline'].fillna('')
|
| 67 |
+
sampled_md['description'] = sampled_md['overview'] + sampled_md['tagline']
|
| 68 |
+
sampled_md['description'] = sampled_md['description'].fillna('')
|
| 69 |
+
sampled_md = sampled_md.reset_index()
|
| 70 |
+
|
| 71 |
+
indices = pd.Series(sampled_md.index, index=sampled_md['title'])
|
| 72 |
+
ind_gen = pd.Series(sampled_md.index, index=sampled_md['genres'])
|
| 73 |
+
|
| 74 |
+
ratings_path = './sampled_movie_dataset/ratings_small.csv'
|
| 75 |
+
ratings_df = pd.read_csv(ratings_path)
|
| 76 |
+
m_id = ratings_df['movieId'].tolist()
|
| 77 |
+
m_id = list(dict.fromkeys(m_id))
|
| 78 |
+
|
| 79 |
+
user_mapping = node_mappings(ratings_path, index_col='userId')
|
| 80 |
+
movie_mapping = node_mappings(ratings_path, index_col='movieId')
|
| 81 |
+
|
| 82 |
+
id_map = pd.read_csv('./sampled_movie_dataset/links_small.csv')[['movieId', 'tmdbId']]
|
| 83 |
+
id_map['tmdbId'] = id_map['tmdbId'].apply(convert_int)
|
| 84 |
+
id_map.columns = ['movieId', 'id']
|
| 85 |
+
id_map = id_map.merge(sampled_md[['title', 'id']], on='id').set_index('title') # tmbdid is same (of links_small) as of id in sampled_md
|
| 86 |
+
indices_map = id_map.set_index('id')
|
| 87 |
+
|
| 88 |
+
no_metadata = remove_movies(m_id)
|
| 89 |
+
|
| 90 |
+
## remove ids which dont have meta data information
|
| 91 |
+
for element in no_metadata:
|
| 92 |
+
if element in m_id:
|
| 93 |
+
print("ids with no metadata information:",element)
|
| 94 |
+
m_id.remove(element)
|
| 95 |
+
|
| 96 |
+
# create new movie_mapping dict with only m_ids having metadata information
|
| 97 |
+
movie_mappings = {}
|
| 98 |
+
for idx, m in enumerate(m_id):
|
| 99 |
+
movie_mappings[m] = idx
|
| 100 |
+
|
| 101 |
+
return movie_mappings
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def load_data_to_ArangoDB():
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|