File size: 1,390 Bytes
5507d79
fa01a43
0dc3ba4
fa01a43
 
 
0dc3ba4
 
 
 
 
 
fa01a43
 
0dc3ba4
fa01a43
 
 
0dc3ba4
fa01a43
 
0dc3ba4
 
fa01a43
0dc3ba4
 
fa01a43
0dc3ba4
fa01a43
 
 
5507d79
0bbf9ea
6854042
0bbf9ea
fa01a43
0bbf9ea
d5a9da1
0bbf9ea
 
48f8b23
 
 
 
 
0bbf9ea
 
 
742752c
c3e4f19
0bbf9ea
c3e4f19
 
 
 
fa01a43
d17cea4
fa01a43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
from logic2 import *
import streamlit.components.v1 as components

st.title('PyG - Movie Recommendation')
st.image('Image_graph.png', caption='Bi-Partite Graph')

st.write('Scatter Plot of embeddings')

HtmlFile = open("plot.html", 'r', encoding='utf-8')
source_code = HtmlFile.read() 
components.html(source_code)

# load Hgraph
st.write('Loading Data')
data = load_hetero_data()

# Load Model
st.write('Loading Model')
model = load_model(data)

#get user_id
user_id = st.number_input('Give User-Id')

# get recommendation
ans = get_recommendation(model,data,user_id)

st.write(ans)






#---------------------
'''
st.write('Making Graph')
global movie_mappings, user_mapping, ratings_df, m_id, id_map, sampled_md
movie_mappings, user_mapping, ratings_df, m_id, id_map, sampled_md = make_graph()
st.write('Login to ArangoDB')
login,url,username,password,dbname = login_ArangoDB()
st.write(url)
st.write(username)
st.write(password)
st.write(dbname)
st.write('Loading Graph to ArangoDB')
movie_rec_db = load_data_to_ArangoDB(login)
st.write('Making PyG graph from ArangoDB')
global data
data,train_data, val_data, test_data = make_pyg_graph(movie_rec_db)
st.write('training graph')
model = load_model(train_data, val_data, test_data)
user_id = st.number_input('Insert a number')
ans = get_recommendation(model,data,user_id)
st.write(ans)
'''
#---------------------