File size: 5,118 Bytes
bed7d75
 
 
 
beaea9f
 
 
 
bed7d75
 
 
 
beaea9f
 
bed7d75
beaea9f
bed7d75
beaea9f
bed7d75
 
 
 
 
 
 
b1a0c4c
c84d527
22a8aa1
b1a0c4c
bb31fc3
 
 
 
 
beaea9f
 
 
 
 
 
 
 
 
 
 
 
 
 
bb31fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beaea9f
 
 
bed7d75
 
beaea9f
bed7d75
 
 
 
 
 
 
aa95f1b
bed7d75
 
 
 
 
beaea9f
bed7d75
 
 
 
beaea9f
 
bed7d75
 
 
 
 
beaea9f
bed7d75
beaea9f
bed7d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beaea9f
 
 
 
 
 
 
bed7d75
beaea9f
bb31fc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import kuzu
import logging
import sys
import os

#import llama_index
from llama_index.graph_stores import KuzuGraphStore
from llama_index import (
    SimpleDirectoryReader,
    ServiceContext,
    KnowledgeGraphIndex,
)
from llama_index.readers import SimpleWebPageReader
from llama_index.indices.loading import load_index_from_storage

from llama_index.llms import OpenAI
from IPython.display import Markdown, display
from llama_index.storage.storage_context import StorageContext

from pyvis.network import Network
import pandas as pd
import numpy as np
import plotly.express as px
import umap

def make_dir():
    if(not os.path.exists("data")): 
        os.mkdir('data')
    

def save_uploadedfile(uploadedfile):
    with open(os.path.join("data",uploadedfile.name),"wb") as f:
        f.write(uploadedfile.getbuffer())

def load_index(token,name):
    os.environ["OPENAI_API_KEY"] = token
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    
    db = kuzu.Database(name+"/kg")
    graph_store = KuzuGraphStore(db)
    llm = OpenAI(temperature=0, model="gpt-3.5-turbo",api_key=token)

    service_context = ServiceContext.from_defaults(llm=llm, chunk_size=512)
    storage_context = StorageContext.from_defaults(graph_store=graph_store,persist_dir=name+"/storage")
    index = load_index_from_storage(storage_context=storage_context,service_context=service_context)
    return index


def get_index_pdf(token,name):
    documents = SimpleDirectoryReader("./data").load_data()
    print(documents)
    print(documents)
    os.mkdir(name) 
    os.environ["OPENAI_API_KEY"] = token
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    db = kuzu.Database(name+"/kg")
    graph_store = KuzuGraphStore(db)
    llm = OpenAI(temperature=0, model="gpt-3.5-turbo",api_key=token)
    service_context = ServiceContext.from_defaults(llm=llm, chunk_size=512)
    storage_context = StorageContext.from_defaults(graph_store=graph_store)
    
    index = KnowledgeGraphIndex.from_documents(documents=documents,
                                               max_triplets_per_chunk=2,
                                               storage_context=storage_context,
                                               service_context=service_context,
                                               show_progress=True,
                                               include_embeddings=True)
    index.storage_context.persist(name+"/storage")
   

    return index

def get_index(links,token,name):
    os.mkdir(name) 
    os.environ["OPENAI_API_KEY"] = token
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    
    db = kuzu.Database(name+"/kg")
    graph_store = KuzuGraphStore(db)
    
    
    documents = SimpleWebPageReader(html_to_text=True).load_data(
        links
    )
    
    llm = OpenAI(temperature=0, model="gpt-3.5-turbo",api_key=token)
    service_context = ServiceContext.from_defaults(llm=llm, chunk_size=512)
    storage_context = StorageContext.from_defaults(graph_store=graph_store)
    
    # NOTE: can take a while!
    index = KnowledgeGraphIndex.from_documents(documents=documents,
                                               max_triplets_per_chunk=2,
                                               storage_context=storage_context,
                                               service_context=service_context,
                                               show_progress=True,
                                               include_embeddings=True)
    index.storage_context.persist(name+"/storage")
   

    return index

def get_network_graph(index):
    g = index.get_networkx_graph()
    net = Network(directed=True)
    net.from_nx(g)
    # net.show("kuzugraph_draw3.html")
    net.save_graph("kuzugraph_draw3.html")


def get_embeddings(index):
    embeddings = index.index_struct.to_dict()
    embeddings_df = pd.DataFrame.from_dict(embeddings)['embedding_dict']
    embeddings_df = embeddings_df.dropna()
    return embeddings_df


def get_visualize_embeddings(embedding_series, n_neighbors=15, min_dist=0.1, n_components=2):
    # Convert Series to DataFrame
    embedding_df = pd.DataFrame(embedding_series.tolist(), columns=[f'dim_{i+1}' for i in range(len(embedding_series[0]))])

    # Perform UMAP dimensionality reduction
    umap_embedded = umap.UMAP(
        n_neighbors=n_neighbors,
        min_dist=min_dist,
        n_components=n_components,
        random_state=42,
    ).fit_transform(embedding_df.values)

    # Plot the UMAP embedding
    umap_df = pd.DataFrame(umap_embedded, columns=['UMAP Dimension 1', 'UMAP Dimension 2'])
    umap_df['Label'] = embedding_series.index
    # Plot the UMAP embedding using Plotly Express
    fig = px.scatter(umap_df, x='UMAP Dimension 1', y='UMAP Dimension 2',hover_data=['Label'], title='UMAP Visualization of Embeddings')
    return fig


def query_model(index,user_query):
    query_engine = index.as_query_engine(
    include_text=True,
    response_mode="tree_summarize",
    embedding_mode="hybrid",
    similarity_top_k=5,
)

    response = query_engine.query(user_query)
    return response