Gopala Krishna
commited on
Commit
·
8cb45d3
1
Parent(s):
46d9da1
working with File, Customer1, Customer2 inputs
Browse files- .vs/UBCFProductRecommendations/FileContentIndex/23001fe7-f3c2-40de-ac4d-18f66948daf0.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/4de817bd-07d4-46fb-b29a-c52bae7ffd85.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/56a4bbc1-0e13-4544-9452-68681c9eecbc.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/7ff40909-b5d8-4c88-8906-d6cc681c52b1.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/800f1087-579e-4bc8-8fc3-587302d5fa2d.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/c3aa39ba-89f8-4970-a24f-fff79ecea051.vsidx +0 -0
- .vs/UBCFProductRecommendations/v17/.wsuo +0 -0
- .vs/VSWorkspaceState.json +1 -1
- .vs/slnx.sqlite +0 -0
- Online_Retail.xlsx → UBCF_Online_Retail.xlsx +0 -0
- app.py +58 -44
.vs/UBCFProductRecommendations/FileContentIndex/23001fe7-f3c2-40de-ac4d-18f66948daf0.vsidx
DELETED
Binary file (455 Bytes)
|
|
.vs/UBCFProductRecommendations/FileContentIndex/4de817bd-07d4-46fb-b29a-c52bae7ffd85.vsidx
DELETED
Binary file (587 Bytes)
|
|
.vs/UBCFProductRecommendations/FileContentIndex/56a4bbc1-0e13-4544-9452-68681c9eecbc.vsidx
DELETED
Binary file (8.62 kB)
|
|
.vs/UBCFProductRecommendations/FileContentIndex/7ff40909-b5d8-4c88-8906-d6cc681c52b1.vsidx
ADDED
Binary file (11.7 kB). View file
|
|
.vs/UBCFProductRecommendations/FileContentIndex/800f1087-579e-4bc8-8fc3-587302d5fa2d.vsidx
ADDED
Binary file (537 Bytes). View file
|
|
.vs/UBCFProductRecommendations/FileContentIndex/c3aa39ba-89f8-4970-a24f-fff79ecea051.vsidx
ADDED
Binary file (224 Bytes). View file
|
|
.vs/UBCFProductRecommendations/v17/.wsuo
CHANGED
Binary files a/.vs/UBCFProductRecommendations/v17/.wsuo and b/.vs/UBCFProductRecommendations/v17/.wsuo differ
|
|
.vs/VSWorkspaceState.json
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
"ExpandedNodes": [
|
3 |
""
|
4 |
],
|
5 |
-
"SelectedNode": "\\
|
6 |
"PreviewInSolutionExplorer": false
|
7 |
}
|
|
|
2 |
"ExpandedNodes": [
|
3 |
""
|
4 |
],
|
5 |
+
"SelectedNode": "\\app.py",
|
6 |
"PreviewInSolutionExplorer": false
|
7 |
}
|
.vs/slnx.sqlite
CHANGED
Binary files a/.vs/slnx.sqlite and b/.vs/slnx.sqlite differ
|
|
Online_Retail.xlsx → UBCF_Online_Retail.xlsx
RENAMED
File without changes
|
app.py
CHANGED
@@ -1,48 +1,62 @@
|
|
1 |
-
|
2 |
import pandas as pd
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
-
|
18 |
-
CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)
|
19 |
-
|
20 |
-
# Create User to User similarity matrix.
|
21 |
-
user_to_user_similarity_matrix = pd.DataFrame(
|
22 |
-
cosine_similarity(CustomerID_Item_matrix)
|
23 |
-
)
|
24 |
-
|
25 |
-
# Update index to corresponding CustomerID.
|
26 |
-
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
|
27 |
-
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
|
28 |
-
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
|
29 |
-
|
30 |
-
# Display CustomerID (12702) purchased items.
|
31 |
-
items_purchased_by_X = set(CustomerID_Item_matrix.loc[12702.0].iloc[
|
32 |
-
CustomerID_Item_matrix.loc[12702.0].to_numpy().nonzero()].index)
|
33 |
-
|
34 |
-
# Display CustomerID (14608) purchased items.
|
35 |
-
items_purchased_by_Y = set(CustomerID_Item_matrix.loc[14608.0].iloc[
|
36 |
-
CustomerID_Item_matrix.loc[14608.0].to_numpy().nonzero()].index)
|
37 |
-
|
38 |
-
# Find out items which purchased by X (12702) but not yet purchased by Y (14608).
|
39 |
-
items_to_recommend_to_Y = items_purchased_by_X - items_purchased_by_Y
|
40 |
-
|
41 |
-
# Display the list of items recommended for Y (14608) with item Description.
|
42 |
-
print(df1a.loc[
|
43 |
-
df1a['StockCode'].isin(items_to_recommend_to_Y),
|
44 |
-
['StockCode', 'Description']
|
45 |
-
].drop_duplicates().set_index('StockCode'))
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
def recommend_items(file, customer_id_1, customer_id_2):
|
6 |
+
# Read data source Excel file.
|
7 |
+
df1 = pd.read_excel("UBCF_Online_Retail.xlsx")
|
8 |
+
df1a = df1.dropna(subset=['CustomerID'])
|
9 |
+
|
10 |
+
# Create CustomerID vs Item (Purchased Items, " StockCode) matrix by pivot table function.
|
11 |
+
CustomerID_Item_matrix = df1a.pivot_table(
|
12 |
+
index='CustomerID',
|
13 |
+
columns='StockCode',
|
14 |
+
values='Quantity',
|
15 |
+
aggfunc='sum'
|
16 |
+
)
|
17 |
+
|
18 |
+
# Update illustration of the matrix, 1 to represent customer have purchased item, 0 to represent customer haven't purchased.
|
19 |
+
CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)
|
20 |
+
|
21 |
+
# Create User to User similarity matrix.
|
22 |
+
user_to_user_similarity_matrix = pd.DataFrame(
|
23 |
+
cosine_similarity(CustomerID_Item_matrix)
|
24 |
+
)
|
25 |
+
|
26 |
+
# Update index to corresponding CustomerID.
|
27 |
+
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
|
28 |
+
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
|
29 |
+
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
|
30 |
+
|
31 |
+
# Display CustomerID (customer_id_1) purchased items.
|
32 |
+
items_purchased_by_X = set(CustomerID_Item_matrix.loc[customer_id_1].iloc[
|
33 |
+
CustomerID_Item_matrix.loc[customer_id_1].to_numpy().nonzero()].index)
|
34 |
+
|
35 |
+
# Display CustomerID (customer_id_2) purchased items.
|
36 |
+
items_purchased_by_Y = set(CustomerID_Item_matrix.loc[customer_id_2].iloc[
|
37 |
+
CustomerID_Item_matrix.loc[customer_id_2].to_numpy().nonzero()].index)
|
38 |
+
|
39 |
+
# Find out items which purchased by X (customer_id_1) but not yet purchased by Y (customer_id_2).
|
40 |
+
items_to_recommend_to_Y = items_purchased_by_X - items_purchased_by_Y
|
41 |
+
|
42 |
+
# Return the list of items recommended for Y (customer_id_2) with item Description.
|
43 |
+
return df1a.loc[
|
44 |
+
df1a['StockCode'].isin(items_to_recommend_to_Y),
|
45 |
+
['StockCode', 'Description']
|
46 |
+
].drop_duplicates().set_index('StockCode')
|
47 |
+
|
48 |
+
# Create a Gradio interface
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=recommend_items,
|
51 |
+
inputs=[
|
52 |
+
gr.inputs.File(label="Excel file (.xlsx)"),
|
53 |
+
gr.inputs.Number(label="Customer ID 1"),
|
54 |
+
gr.inputs.Number(label="Customer ID 2"),
|
55 |
+
],
|
56 |
+
outputs="dataframe",
|
57 |
+
title="Item Recommendation System",
|
58 |
+
description="This system recommends items for a customer based on another customer's purchase history.",
|
59 |
+
allow_flagging=False
|
60 |
)
|
61 |
|
62 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|