Gopala Krishna
commited on
Commit
·
6e7fba3
1
Parent(s):
8c3633d
Cleaned
Browse files
.vs/UBCFProductRecommendations/FileContentIndex/3d67ad77-3441-41ca-8028-b6802390d8c7.vsidx
DELETED
Binary file (9.21 kB)
|
|
.vs/UBCFProductRecommendations/v17/.wsuo
CHANGED
Binary files a/.vs/UBCFProductRecommendations/v17/.wsuo and b/.vs/UBCFProductRecommendations/v17/.wsuo differ
|
|
app.py
CHANGED
@@ -1,31 +1,11 @@
|
|
1 |
|
2 |
-
# Import necessary libraries.
|
3 |
import pandas as pd
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
|
6 |
# Read data source Excel files.
|
7 |
df1 = pd.read_excel('Online_Retail.xlsx')
|
8 |
-
|
9 |
-
# Check dataframe information.
|
10 |
-
#df1.info()
|
11 |
-
|
12 |
-
# Read header of dataframe.
|
13 |
-
#df1.head()
|
14 |
-
|
15 |
-
# Check any column containing the null value.
|
16 |
-
#df1.isnull().any()
|
17 |
-
|
18 |
-
# Count the number of null value records in the CustomerID column.
|
19 |
-
#df1['CustomerID'].isna().sum()
|
20 |
-
|
21 |
df1a = df1.dropna(subset=['CustomerID'])
|
22 |
|
23 |
-
# Check dataframe information.
|
24 |
-
#df1a.info()
|
25 |
-
|
26 |
-
# Read header of dataframe.
|
27 |
-
#df1a.head()
|
28 |
-
|
29 |
# Create CustomerID vs Item (Purchased Items, by StockCode) matrix by pivot table function.
|
30 |
CustomerID_Item_matrix = df1a.pivot_table(
|
31 |
index='CustomerID',
|
@@ -34,51 +14,30 @@ CustomerID_Item_matrix = df1a.pivot_table(
|
|
34 |
aggfunc='sum'
|
35 |
)
|
36 |
|
37 |
-
# Display the shape of matrix, 4372 rows of CustomerID, 3684 columns of Item.
|
38 |
-
#CustomerID_Item_matrix.shape
|
39 |
-
|
40 |
# Update illustration of the matrix, 1 to represent customer have purchased item, 0 to represent customer haven't purchased.
|
41 |
CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)
|
42 |
|
43 |
-
# Read header of CustomerID vs Item matrix.
|
44 |
-
#CustomerID_Item_matrix.loc[12680:].head()
|
45 |
-
|
46 |
# Create User to User similarity matrix.
|
47 |
user_to_user_similarity_matrix = pd.DataFrame(
|
48 |
cosine_similarity(CustomerID_Item_matrix)
|
49 |
)
|
50 |
|
51 |
-
# Display header of User to User similarity matrix.
|
52 |
-
#user_to_user_similarity_matrix.head()
|
53 |
-
|
54 |
# Update index to corresponding CustomerID.
|
55 |
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
|
56 |
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
|
57 |
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
|
58 |
|
59 |
-
# Display header of User to User similarity matrix.
|
60 |
-
#user_to_user_similarity_matrix.head()
|
61 |
-
|
62 |
-
# Randomly pick CustomerID (12702) to display the most similar CustomerID.
|
63 |
-
# The most similar CustomerID is 14608, which has 51% similarity.
|
64 |
-
#user_to_user_similarity_matrix.loc[12702.0].sort_values(ascending=False)
|
65 |
-
|
66 |
# Display CustomerID (12702) purchased items.
|
67 |
items_purchased_by_X = set(CustomerID_Item_matrix.loc[12702.0].iloc[
|
68 |
CustomerID_Item_matrix.loc[12702.0].to_numpy().nonzero()].index)
|
69 |
-
#items_purchased_by_X
|
70 |
|
71 |
# Display CustomerID (14608) purchased items.
|
72 |
items_purchased_by_Y = set(CustomerID_Item_matrix.loc[14608.0].iloc[
|
73 |
CustomerID_Item_matrix.loc[14608.0].to_numpy().nonzero()].index)
|
74 |
-
#items_purchased_by_Y
|
75 |
|
76 |
# Find out items which purchased by X (12702) but not yet purchased by Y (14608).
|
77 |
items_to_recommend_to_Y = items_purchased_by_X - items_purchased_by_Y
|
78 |
|
79 |
-
# Display the list of items recommended for Y (14608).
|
80 |
-
#items_to_recommend_to_Y
|
81 |
-
|
82 |
# Display the list of items recommended for Y (14608) with item Description.
|
83 |
print(df1a.loc[
|
84 |
df1a['StockCode'].isin(items_to_recommend_to_Y),
|
|
|
1 |
|
|
|
2 |
import pandas as pd
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
|
5 |
# Read data source Excel files.
|
6 |
df1 = pd.read_excel('Online_Retail.xlsx')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
df1a = df1.dropna(subset=['CustomerID'])
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Create CustomerID vs Item (Purchased Items, by StockCode) matrix by pivot table function.
|
10 |
CustomerID_Item_matrix = df1a.pivot_table(
|
11 |
index='CustomerID',
|
|
|
14 |
aggfunc='sum'
|
15 |
)
|
16 |
|
|
|
|
|
|
|
17 |
# Update illustration of the matrix, 1 to represent customer have purchased item, 0 to represent customer haven't purchased.
|
18 |
CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)
|
19 |
|
|
|
|
|
|
|
20 |
# Create User to User similarity matrix.
|
21 |
user_to_user_similarity_matrix = pd.DataFrame(
|
22 |
cosine_similarity(CustomerID_Item_matrix)
|
23 |
)
|
24 |
|
|
|
|
|
|
|
25 |
# Update index to corresponding CustomerID.
|
26 |
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
|
27 |
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
|
28 |
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Display CustomerID (12702) purchased items.
|
31 |
items_purchased_by_X = set(CustomerID_Item_matrix.loc[12702.0].iloc[
|
32 |
CustomerID_Item_matrix.loc[12702.0].to_numpy().nonzero()].index)
|
|
|
33 |
|
34 |
# Display CustomerID (14608) purchased items.
|
35 |
items_purchased_by_Y = set(CustomerID_Item_matrix.loc[14608.0].iloc[
|
36 |
CustomerID_Item_matrix.loc[14608.0].to_numpy().nonzero()].index)
|
|
|
37 |
|
38 |
# Find out items which purchased by X (12702) but not yet purchased by Y (14608).
|
39 |
items_to_recommend_to_Y = items_purchased_by_X - items_purchased_by_Y
|
40 |
|
|
|
|
|
|
|
41 |
# Display the list of items recommended for Y (14608) with item Description.
|
42 |
print(df1a.loc[
|
43 |
df1a['StockCode'].isin(items_to_recommend_to_Y),
|