# HuggingFace Hub
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("Plsek/CADET-v1")
# Basic libraries
import os
import shutil
import numpy as np
from scipy.ndimage import center_of_mass
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from matplotlib.patches import Rectangle
# Astropy
from astropy.io import fits
from astropy.wcs import WCS
from astropy.nddata import Cutout2D, CCDData
from astropy.convolution import Gaussian2DKernel as Gauss
from astropy.convolution import convolve
# Scikit-learn
from sklearn.cluster import DBSCAN
# Streamlit
import streamlit as st
st.set_option('deprecation.showPyplotGlobalUse', False)
# Define function to plot the uploaded image
def plot_image(image, scale):
plt.figure(figsize=(4, 4))
x0 = image.shape[0] // 2 - scale * 128 / 2
plt.imshow(image, origin="lower")
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
plt.axis('off')
with colA: st.pyplot()
# Define function to plot the prediction
def plot_prediction(pred):
plt.figure(figsize=(4, 4))
plt.imshow(pred, origin="lower")
plt.axis('off')
with colB: st.pyplot()
# Define function to plot the decomposed prediction
def plot_decomposed(decomposed):
plt.figure(figsize=(4, 4))
plt.imshow(decomposed, origin="lower") #, norm=LogNorm())
N = int(np.max(decomposed))
for i in range(N):
new = np.where(decomposed == i+1, 1, 0)
x0, y0 = center_of_mass(new)
color = "white" if i < N//2 else "black"
plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
plt.axis('off')
with colC: st.pyplot()
# Define function to cut input image and rebin it to 128x128 pixels
def cut(data0, wcs0, scale=1):
shape = data0.shape[0]
x0 = shape / 2
size = 128 * scale
cutout = Cutout2D(data0, (x0, x0), (size, size), wcs=wcs0)
data, wcs = cutout.data, cutout.wcs
# Regrid data
factor = size // 128
data = data.reshape(128, factor, 128, factor).mean(-1).mean(1)
# Regrid wcs
ra, dec = wcs.wcs_pix2world(np.array([[63, 63]]),0)[0]
wcs.wcs.cdelt[0] = wcs.wcs.cdelt[0] * factor
wcs.wcs.cdelt[1] = wcs.wcs.cdelt[1] * factor
wcs.wcs.crval[0] = ra
wcs.wcs.crval[1] = dec
wcs.wcs.crpix[0] = 64 / factor
wcs.wcs.crpix[1] = 64 / factor
return data, wcs
# Define function to apply cutting and produce a prediction
@st.cache
def cut_n_predict(data, wcs, scale):
data, wcs = cut(data, wcs, scale=scale)
image = np.log10(data+1)
y_pred = 0
for j in [0,1,2,3]:
rotated = np.rot90(image, j)
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
pred = np.rot90(pred, -j)
y_pred += pred / 4
return y_pred, wcs
# Define function to decompose prediction into individual cavities
@st.cache
def decompose_cavity(pred, th2=0.7, amin=10):
X, Y = pred.nonzero()
data = np.array([X,Y]).reshape(2, -1)
# DBSCAN clustering
try: clusters = DBSCAN(eps=1.0, min_samples=3).fit(data.T).labels_
except: clusters = []
N = len(set(clusters))
cavities = []
for i in range(N):
img = np.zeros((128,128))
b = clusters == i
xi, yi = X[b], Y[b]
img[xi, yi] = pred[xi, yi]
# Thresholding #2
if not (img > th2).any(): continue
# Minimal area
if np.sum(img) <= amin: continue
cavities.append(img)
# Save raw and decomposed predictions to predictions folder
ccd = CCDData(pred, unit="adu", wcs=wcs)
ccd.write(f"predictions/predicted.fits", overwrite=True)
image_decomposed = np.zeros((128,128))
for i, cav in enumerate(cavities):
ccd = CCDData(cav, unit="adu", wcs=wcs)
ccd.write(f"predictions/predicted_{i+1}.fits", overwrite=True)
image_decomposed += (i+1) * np.where(cav > 0, 1, 0)
# shutil.make_archive("predictions", 'zip', "predictions")
return image_decomposed
# Use wide layout and create columns
st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
bordersize = 0.6
_, col, _ = st.columns([bordersize, 3, bordersize])
os.system("mkdir -p predictions")
with col:
# Create heading and description
st.markdown("# Cavity Detection Tool")
st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
st.markdown("To use this tool: upload your image, select the scale of interest, and make a prediction!")
st.markdown("Input images should be centred at the centre of the galaxy and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
_, col_1, _, col_2, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
with col_1:
# Create file uploader widget
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
with col_2:
st.markdown("# Examples")
NGC4649 = st.button("NGC4649")
NGC5813 = st.button("NGC5813")
if NGC4649: uploaded_file = "NGC4649_example.fits"
elif NGC5813: uploaded_file = "NGC5813_example.fits"
# If file is uploaded, read in the data and plot it
if uploaded_file is not None:
with fits.open(uploaded_file) as hdul:
data = hdul[0].data
wcs = WCS(hdul[0].header)
# Make six columns for buttons
_, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
col1.subheader("Input image")
col3.subheader("Prediction")
col5.subheader("Decomposed")
col6.subheader("")
with col1:
st.markdown("""""", unsafe_allow_html=True)
max_scale = int(data.shape[0] // 128)
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
scale = int(scale.split("x")[0]) // 128
# Detect button
with col3: detect = st.button('Detect', key="detect")
# Threshold slider
with col4:
st.markdown("")
# st.markdown("""""", unsafe_allow_html=True)
threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05) #, label_visibility="hidden")
# Decompose button
with col5: decompose = st.button('Decompose', key="decompose")
# Make two columns for plots
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
image = np.log10(data+1)
plot_image(image, scale)
if detect or threshold:
y_pred, wcs = cut_n_predict(data, wcs, scale)
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
plot_prediction(y_pred_th)
if decompose or st.session_state.get("download", False):
image_decomposed = decompose_cavity(y_pred_th)
plot_decomposed(image_decomposed)
with col6:
st.markdown("
", unsafe_allow_html=True)
# st.markdown("""""", unsafe_allow_html=True)
fname = uploaded_file.name.strip(".fits")
# if st.session_state.get("download", False):
shutil.make_archive("predictions", 'zip', "predictions")
with open('predictions.zip', 'rb') as f:
res = f.read()
download = st.download_button(label="Download", data=res, key="download",
file_name=f'{fname}_{int(scale*128)}.zip',
# disabled=st.session_state.get("disabled", True),
mime="application/octet-stream")