# HuggingFace Hub from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("Plsek/CADET-v1") # Basic libraries import os import shutil import numpy as np from scipy.ndimage import center_of_mass import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib.patches import Rectangle # Astropy from astropy.io import fits from astropy.wcs import WCS from astropy.nddata import Cutout2D, CCDData from astropy.convolution import Gaussian2DKernel as Gauss from astropy.convolution import convolve # Scikit-learn from sklearn.cluster import DBSCAN # Streamlit import streamlit as st st.set_option('deprecation.showPyplotGlobalUse', False) # Define function to plot the uploaded image def plot_image(image, scale): plt.figure(figsize=(4, 4)) x0 = image.shape[0] // 2 - scale * 128 / 2 plt.imshow(image, origin="lower") plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none')) plt.axis('off') with colA: st.pyplot() # Define function to plot the prediction def plot_prediction(pred): plt.figure(figsize=(4, 4)) plt.imshow(pred, origin="lower") plt.axis('off') with colB: st.pyplot() # Define function to plot the decomposed prediction def plot_decomposed(decomposed): plt.figure(figsize=(4, 4)) plt.imshow(decomposed, origin="lower") #, norm=LogNorm()) N = int(np.max(decomposed)) for i in range(N): new = np.where(decomposed == i+1, 1, 0) x0, y0 = center_of_mass(new) color = "white" if i < N//2 else "black" plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color) plt.axis('off') with colC: st.pyplot() # Define function to cut input image and rebin it to 128x128 pixels def cut(data0, wcs0, scale=1): shape = data0.shape[0] x0 = shape / 2 size = 128 * scale cutout = Cutout2D(data0, (x0, x0), (size, size), wcs=wcs0) data, wcs = cutout.data, cutout.wcs # Regrid data factor = size // 128 data = data.reshape(128, factor, 128, factor).mean(-1).mean(1) # Regrid wcs ra, dec = wcs.wcs_pix2world(np.array([[63, 63]]),0)[0] wcs.wcs.cdelt[0] = wcs.wcs.cdelt[0] * factor wcs.wcs.cdelt[1] = wcs.wcs.cdelt[1] * factor wcs.wcs.crval[0] = ra wcs.wcs.crval[1] = dec wcs.wcs.crpix[0] = 64 / factor wcs.wcs.crpix[1] = 64 / factor return data, wcs # Define function to apply cutting and produce a prediction @st.cache def cut_n_predict(data, wcs, scale): data, wcs = cut(data, wcs, scale=scale) image = np.log10(data+1) y_pred = 0 for j in [0,1,2,3]: rotated = np.rot90(image, j) pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128) pred = np.rot90(pred, -j) y_pred += pred / 4 return y_pred, wcs # Define function to decompose prediction into individual cavities @st.cache def decompose_cavity(pred, th2=0.7, amin=10): X, Y = pred.nonzero() data = np.array([X,Y]).reshape(2, -1) # DBSCAN clustering try: clusters = DBSCAN(eps=1.0, min_samples=3).fit(data.T).labels_ except: clusters = [] N = len(set(clusters)) cavities = [] for i in range(N): img = np.zeros((128,128)) b = clusters == i xi, yi = X[b], Y[b] img[xi, yi] = pred[xi, yi] # Thresholding #2 if not (img > th2).any(): continue # Minimal area if np.sum(img) <= amin: continue cavities.append(img) # Save raw and decomposed predictions to predictions folder ccd = CCDData(pred, unit="adu", wcs=wcs) ccd.write(f"predictions/predicted.fits", overwrite=True) image_decomposed = np.zeros((128,128)) for i, cav in enumerate(cavities): ccd = CCDData(cav, unit="adu", wcs=wcs) ccd.write(f"predictions/predicted_{i+1}.fits", overwrite=True) image_decomposed += (i+1) * np.where(cav > 0, 1, 0) # shutil.make_archive("predictions", 'zip', "predictions") return image_decomposed # Use wide layout and create columns st.set_page_config(page_title="Cavity Detection Tool", layout="wide") bordersize = 0.6 _, col, _ = st.columns([bordersize, 3, bordersize]) os.system("mkdir -p predictions") with col: # Create heading and description st.markdown("# Cavity Detection Tool") st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.") st.markdown("To use this tool: upload your image, select the scale of interest, and make a prediction!") st.markdown("Input images should be centred at the centre of the galaxy and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).") st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)") _, col_1, _, col_2, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize]) with col_1: # Create file uploader widget uploaded_file = st.file_uploader("Choose a FITS file", type=['fits']) with col_2: st.markdown("# Examples") NGC4649 = st.button("NGC4649") NGC5813 = st.button("NGC5813") if NGC4649: uploaded_file = "NGC4649_example.fits" elif NGC5813: uploaded_file = "NGC5813_example.fits" # If file is uploaded, read in the data and plot it if uploaded_file is not None: with fits.open(uploaded_file) as hdul: data = hdul[0].data wcs = WCS(hdul[0].header) # Make six columns for buttons _, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize]) col1.subheader("Input image") col3.subheader("Prediction") col5.subheader("Decomposed") col6.subheader("") with col1: st.markdown("""""", unsafe_allow_html=True) max_scale = int(data.shape[0] // 128) scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden") scale = int(scale.split("x")[0]) // 128 # Detect button with col3: detect = st.button('Detect', key="detect") # Threshold slider with col4: st.markdown("") # st.markdown("""""", unsafe_allow_html=True) threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05) #, label_visibility="hidden") # Decompose button with col5: decompose = st.button('Decompose', key="decompose") # Make two columns for plots _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize]) image = np.log10(data+1) plot_image(image, scale) if detect or threshold: y_pred, wcs = cut_n_predict(data, wcs, scale) y_pred_th = np.where(y_pred > threshold, y_pred, 0) plot_prediction(y_pred_th) if decompose or st.session_state.get("download", False): image_decomposed = decompose_cavity(y_pred_th) plot_decomposed(image_decomposed) with col6: st.markdown("
", unsafe_allow_html=True) # st.markdown("""""", unsafe_allow_html=True) fname = uploaded_file.name.strip(".fits") # if st.session_state.get("download", False): shutil.make_archive("predictions", 'zip', "predictions") with open('predictions.zip', 'rb') as f: res = f.read() download = st.download_button(label="Download", data=res, key="download", file_name=f'{fname}_{int(scale*128)}.zip', # disabled=st.session_state.get("disabled", True), mime="application/octet-stream")