Update app.py
Browse files
app.py
CHANGED
@@ -138,21 +138,24 @@ if uploaded_file is not None:
|
|
138 |
data, wcs = cut(data, wcs, scale=scale)
|
139 |
image = np.log10(data+1)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
# plot_prediction(y_pred, decompose)
|
155 |
-
|
156 |
# ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
157 |
# ccd.write("predicted.fits", overwrite=True)
|
158 |
# with open('predicted.fits', 'rb') as f:
|
|
|
138 |
data, wcs = cut(data, wcs, scale=scale)
|
139 |
image = np.log10(data+1)
|
140 |
|
141 |
+
y_pred = 0
|
142 |
+
for j in [0,1,2,3]:
|
143 |
+
rotated = np.rot90(image, j)
|
144 |
+
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
145 |
+
pred = np.rot90(pred, -j)
|
146 |
+
y_pred += pred / 4
|
147 |
+
|
148 |
+
with colB:
|
149 |
+
threshold = st.slider("", (0, 1, 0.5, 0.05), label_visibility="hidden")
|
150 |
+
|
151 |
+
# Thresholding
|
152 |
+
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
153 |
+
|
154 |
+
plot_prediction(y_pred, decompose)
|
155 |
+
|
156 |
+
# if decompose:
|
157 |
+
# cavs = decompose_cavity(y_pred, )
|
158 |
|
|
|
|
|
159 |
# ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
160 |
# ccd.write("predicted.fits", overwrite=True)
|
161 |
# with open('predicted.fits', 'rb') as f:
|