Update app.py
Browse files
app.py
CHANGED
@@ -135,24 +135,24 @@ if uploaded_file is not None:
|
|
135 |
image = np.log10(data+1)
|
136 |
plot_image(image, scale)
|
137 |
|
138 |
-
with colB:
|
139 |
-
|
140 |
|
141 |
-
if detect:
|
142 |
-
|
143 |
-
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
# if decompose:
|
158 |
# cavs = decompose_cavity(y_pred, )
|
|
|
135 |
image = np.log10(data+1)
|
136 |
plot_image(image, scale)
|
137 |
|
138 |
+
# with colB:
|
139 |
+
# threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
140 |
|
141 |
+
# if detect:
|
142 |
+
# data, wcs = cut(data, wcs, scale=scale)
|
143 |
+
# image = np.log10(data+1)
|
144 |
|
145 |
+
# y_pred = 0
|
146 |
+
# for j in [0,1,2,3]:
|
147 |
+
# rotated = np.rot90(image, j)
|
148 |
+
# pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
149 |
+
# pred = np.rot90(pred, -j)
|
150 |
+
# y_pred += pred / 4
|
151 |
+
|
152 |
+
# # Thresholding
|
153 |
+
# y_pred = np.where(y_pred > threshold, y_pred, 0)
|
154 |
|
155 |
+
# plot_prediction(y_pred)
|
156 |
|
157 |
# if decompose:
|
158 |
# cavs = decompose_cavity(y_pred, )
|