Plsek commited on
Commit
eba1cee
·
1 Parent(s): 707774a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -6
app.py CHANGED
@@ -18,11 +18,11 @@ def plot_image(image_array, scale):
18
  # st.set_plot_config(plt, figsize=(4, 4))
19
  plt.figure(figsize=(4, 4))
20
  # plt.subplot(1, 2, 1)
21
- x0 = image_array.shape[0] // 2 - scale * 128 / 64
22
  plt.imshow(image_array, origin="lower")
23
  plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
24
  plt.axis('off')
25
- st.pyplot(width=400)
26
 
27
  # Define function to plot the prediction
28
  def plot_prediction(image_array, pred):
@@ -35,7 +35,7 @@ def plot_prediction(image_array, pred):
35
  plt.subplot(1, 2, 2)
36
  plt.imshow(pred, origin="lower")
37
  plt.axis('off')
38
- st.pyplot(width=800)
39
 
40
  def cut(data0, wcs0, scale=1):
41
  shape = data0.shape[0]
@@ -73,14 +73,19 @@ if uploaded_file is not None:
73
 
74
  plot_image(np.log10(data+1), scale)
75
 
76
- if st.button('Detect Cavity'):
77
  data, wcs = cut(data, wcs, scale=scale)
78
 
79
  image_data = np.log10(data+1)
80
 
81
- pred = model.predict(image_data.reshape(1, 128, 128, 1)).reshape(128 ,128)
 
 
 
 
 
82
 
83
  # ccd = CCDData(pred, unit="adu", wcs=wcs)
84
  # ccd.write(f"predicted.fits", overwrite=True)
85
 
86
- plot_prediction(image_data, pred)
 
18
  # st.set_plot_config(plt, figsize=(4, 4))
19
  plt.figure(figsize=(4, 4))
20
  # plt.subplot(1, 2, 1)
21
+ x0 = image_array.shape[0] // 2 - scale * 128 / 2
22
  plt.imshow(image_array, origin="lower")
23
  plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
24
  plt.axis('off')
25
+ st.pyplot(width=200)
26
 
27
  # Define function to plot the prediction
28
  def plot_prediction(image_array, pred):
 
35
  plt.subplot(1, 2, 2)
36
  plt.imshow(pred, origin="lower")
37
  plt.axis('off')
38
+ st.pyplot(width=400)
39
 
40
  def cut(data0, wcs0, scale=1):
41
  shape = data0.shape[0]
 
73
 
74
  plot_image(np.log10(data+1), scale)
75
 
76
+ if st.button('Detect cavities'):
77
  data, wcs = cut(data, wcs, scale=scale)
78
 
79
  image_data = np.log10(data+1)
80
 
81
+ y_pred = 0
82
+ for j in [0,1,2,3]:
83
+ rotated = np.rot90(image, j)
84
+ pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
85
+ pred = np.rot90(pred, -j)
86
+ y_pred += pred / 4
87
 
88
  # ccd = CCDData(pred, unit="adu", wcs=wcs)
89
  # ccd.write(f"predicted.fits", overwrite=True)
90
 
91
+ plot_prediction(image_data, y_pred)