Update app.py
Browse files
app.py
CHANGED
@@ -110,6 +110,7 @@ if uploaded_file is not None:
|
|
110 |
with fits.open(uploaded_file) as hdul:
|
111 |
data = hdul[0].data
|
112 |
wcs = WCS(hdul[0].header)
|
|
|
113 |
|
114 |
# Make four columns for buttons
|
115 |
_, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
|
@@ -118,7 +119,7 @@ if uploaded_file is not None:
|
|
118 |
col5.subheader("Decomposed")
|
119 |
|
120 |
with col1:
|
121 |
-
|
122 |
max_scale = int(data.shape[0] // 128)
|
123 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
124 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
@@ -136,12 +137,11 @@ if uploaded_file is not None:
|
|
136 |
|
137 |
image = np.log10(data+1)
|
138 |
with colA:
|
139 |
-
st.markdown("""<style>[data-baseweb="select"] {margin-top: 6px;}</style>""", unsafe_allow_html=True)
|
140 |
plot_image(image, scale)
|
141 |
|
142 |
with colB:
|
|
|
143 |
threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
144 |
-
y_pred = np.zeros((128,128))
|
145 |
plot_prediction(y_pred)
|
146 |
|
147 |
if detect:
|
|
|
110 |
with fits.open(uploaded_file) as hdul:
|
111 |
data = hdul[0].data
|
112 |
wcs = WCS(hdul[0].header)
|
113 |
+
y_pred = np.zeros((128,128))
|
114 |
|
115 |
# Make four columns for buttons
|
116 |
_, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
|
|
|
119 |
col5.subheader("Decomposed")
|
120 |
|
121 |
with col1:
|
122 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
|
123 |
max_scale = int(data.shape[0] // 128)
|
124 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
125 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
|
|
137 |
|
138 |
image = np.log10(data+1)
|
139 |
with colA:
|
|
|
140 |
plot_image(image, scale)
|
141 |
|
142 |
with colB:
|
143 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
144 |
threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
|
|
145 |
plot_prediction(y_pred)
|
146 |
|
147 |
if detect:
|