Plsek commited on
Commit
e04bf99
·
1 Parent(s): ce85c47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -110,6 +110,7 @@ if uploaded_file is not None:
110
  with fits.open(uploaded_file) as hdul:
111
  data = hdul[0].data
112
  wcs = WCS(hdul[0].header)
 
113
 
114
  # Make four columns for buttons
115
  _, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
@@ -118,7 +119,7 @@ if uploaded_file is not None:
118
  col5.subheader("Decomposed")
119
 
120
  with col1:
121
- # st.markdown("""<style>[data-baseweb="select"] {margin-top: -56px;}</style>""", unsafe_allow_html=True)
122
  max_scale = int(data.shape[0] // 128)
123
  # scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
124
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
@@ -136,12 +137,11 @@ if uploaded_file is not None:
136
 
137
  image = np.log10(data+1)
138
  with colA:
139
- st.markdown("""<style>[data-baseweb="select"] {margin-top: 6px;}</style>""", unsafe_allow_html=True)
140
  plot_image(image, scale)
141
 
142
  with colB:
 
143
  threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
144
- y_pred = np.zeros((128,128))
145
  plot_prediction(y_pred)
146
 
147
  if detect:
 
110
  with fits.open(uploaded_file) as hdul:
111
  data = hdul[0].data
112
  wcs = WCS(hdul[0].header)
113
+ y_pred = np.zeros((128,128))
114
 
115
  # Make four columns for buttons
116
  _, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
 
119
  col5.subheader("Decomposed")
120
 
121
  with col1:
122
+ st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
123
  max_scale = int(data.shape[0] // 128)
124
  # scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
125
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
 
137
 
138
  image = np.log10(data+1)
139
  with colA:
 
140
  plot_image(image, scale)
141
 
142
  with colB:
143
+ st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
144
  threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
 
145
  plot_prediction(y_pred)
146
 
147
  if detect: