Plsek commited on
Commit
b95ef96
·
1 Parent(s): febf694

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -177,9 +177,9 @@ with col:
177
 
178
  # #F3F4F6
179
  st.markdown("<div style='border-radius:5px;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px;line-height:140%;font-size:120%;background-color:#FFFFFF;'>\
180
- Cavity Detection Tool <a href='https://github.com/tomasplsek/CADET'>(CADET)</a> is a machine learning pipeline trained to detect X-ray cavities from <em>Chandra</em> images of early-type galaxies, groups, and clusters.\
181
  If you use this tool in your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>.\
182
- <br style='margin-bottom: 6px'>To use this tool:<br><b>1)</b> upload your FITS file<br><b>2)</b> select the scale of interest<br><b>3)</b> make a prediction<br><b>4)</b> decompose into individual cavities. \
183
  </div>", unsafe_allow_html=True)
184
 
185
  # Input images should be FITS files in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
@@ -192,7 +192,8 @@ with col_1:
192
  uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
193
 
194
  with col_2:
195
- example = st.button("Examples")
 
196
 
197
  # with col_2:
198
  # st.markdown("### Examples")
@@ -247,7 +248,7 @@ with col5: decompose = st.button('Decompose', key="decompose")
247
  # Make two columns for plots
248
  _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
249
 
250
- if uploaded_file is not None:
251
  # NORMALIZE IMAGE
252
  MIN = np.min(np.where(data == 0, 1, data))
253
  if MIN < 1: data = data / MIN
 
177
 
178
  # #F3F4F6
179
  st.markdown("<div style='border-radius:5px;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px;line-height:140%;font-size:120%;background-color:#FFFFFF;'>\
180
+ Cavity Detection Tool <a href='https://github.com/tomasplsek/CADET'>(CADET)</a> is a machine learning pipeline trained to detect X-ray cavities from <em>Chandra</em> images of early-type galaxies, groups, and clusters. \
181
  If you use this tool in your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>.\
182
+ <br style='margin-bottom: 9px'>To use this tool:<br><b>1)</b> upload your FITS file<br><b>2)</b> select the scale of interest<br><b>3)</b> make a prediction<br><b>4)</b> decompose into individual cavities. \
183
  </div>", unsafe_allow_html=True)
184
 
185
  # Input images should be FITS files in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
 
192
  uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
193
 
194
  with col_2:
195
+ st.markdown("<br style='margin:24px 0'>", unsafe_allow_html=True)
196
+ example = st.button("Example")
197
 
198
  # with col_2:
199
  # st.markdown("### Examples")
 
248
  # Make two columns for plots
249
  _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
250
 
251
+ if data is not np.zeros((128,128)):
252
  # NORMALIZE IMAGE
253
  MIN = np.min(np.where(data == 0, 1, data))
254
  if MIN < 1: data = data / MIN