Plsek commited on
Commit
a67c4b2
·
1 Parent(s): 26fdb1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -11,8 +11,6 @@ from matplotlib.patches import Rectangle
11
  from astropy.io import fits
12
  from astropy.wcs import WCS
13
  from astropy.nddata import Cutout2D, CCDData
14
- from astropy.convolution import Gaussian2DKernel as Gauss
15
- from astropy.convolution import convolve
16
 
17
  # Scikit-learn
18
  from sklearn.cluster import DBSCAN
@@ -23,7 +21,6 @@ st.set_option('deprecation.showPyplotGlobalUse', False)
23
  st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
24
 
25
  # HuggingFace Hub
26
- # os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
27
  from huggingface_hub import from_pretrained_keras
28
  # from tensorflow.keras.models import load_model
29
 
@@ -49,17 +46,15 @@ def plot_prediction(pred):
49
  def plot_decomposed(decomposed):
50
  plt.figure(figsize=(4, 4))
51
  plt.imshow(decomposed, origin="lower")
52
-
53
  N = int(np.max(decomposed))
54
  for i in range(N):
55
  new = np.where(decomposed == i+1, 1, 0)
56
  x0, y0 = center_of_mass(new)
57
  color = "white" if i < N//2 else "black"
58
  plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
59
-
60
  plt.axis('off')
61
  with colC: st.pyplot()
62
-
63
  # Define function to cut input image and rebin it to 128x128 pixels
64
  def cut(data0, wcs0, scale=1):
65
  shape = data0.shape[0]
@@ -138,6 +133,7 @@ def decompose_cavity(pred, fname, th2=0.7, amin=10):
138
 
139
  return image_decomposed
140
 
 
141
  @st.cache #_data
142
  def load_file(fname):
143
  with fits.open(fname) as hdul:
@@ -145,14 +141,17 @@ def load_file(fname):
145
  wcs = WCS(hdul[0].header)
146
  return data, wcs
147
 
 
148
  @st.cache(allow_output_mutation=True) #_resource
149
  def load_CADET():
150
  model = from_pretrained_keras("Plsek/CADET-v1")
151
  # model = load_model("CADET.hdf5")
152
  return model
153
 
 
154
  def reset_threshold():
155
- del st.session_state["threshold"]
 
156
 
157
 
158
  # Load model
@@ -178,7 +177,7 @@ with col:
178
  # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
179
 
180
  # with col:
181
- uploaded_file = st.file_uploader("Choose a FITS file", type=['fits']) #, on_change=reset_threshold)
182
 
183
  # with col_2:
184
  # st.markdown("### Examples")
 
11
  from astropy.io import fits
12
  from astropy.wcs import WCS
13
  from astropy.nddata import Cutout2D, CCDData
 
 
14
 
15
  # Scikit-learn
16
  from sklearn.cluster import DBSCAN
 
21
  st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
22
 
23
  # HuggingFace Hub
 
24
  from huggingface_hub import from_pretrained_keras
25
  # from tensorflow.keras.models import load_model
26
 
 
46
  def plot_decomposed(decomposed):
47
  plt.figure(figsize=(4, 4))
48
  plt.imshow(decomposed, origin="lower")
 
49
  N = int(np.max(decomposed))
50
  for i in range(N):
51
  new = np.where(decomposed == i+1, 1, 0)
52
  x0, y0 = center_of_mass(new)
53
  color = "white" if i < N//2 else "black"
54
  plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
 
55
  plt.axis('off')
56
  with colC: st.pyplot()
57
+
58
  # Define function to cut input image and rebin it to 128x128 pixels
59
  def cut(data0, wcs0, scale=1):
60
  shape = data0.shape[0]
 
133
 
134
  return image_decomposed
135
 
136
+ # Define function that loads FITS file and return data & wcs
137
  @st.cache #_data
138
  def load_file(fname):
139
  with fits.open(fname) as hdul:
 
141
  wcs = WCS(hdul[0].header)
142
  return data, wcs
143
 
144
+ # Define function to load model
145
  @st.cache(allow_output_mutation=True) #_resource
146
  def load_CADET():
147
  model = from_pretrained_keras("Plsek/CADET-v1")
148
  # model = load_model("CADET.hdf5")
149
  return model
150
 
151
+
152
  def reset_threshold():
153
+ # del st.session_state["threshold"]
154
+ st.session_state['threshold'] = 0
155
 
156
 
157
  # Load model
 
177
  # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
178
 
179
  # with col:
180
+ uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
181
 
182
  # with col_2:
183
  # st.markdown("### Examples")