Plsek commited on
Commit
a075dcf
·
1 Parent(s): a45eebf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -169,7 +169,7 @@ os.system("rm -R -- */")
169
  with col:
170
  with st.container():
171
  # Create heading and description
172
- st.markdown("<h1 align='center'>Cavity Detection Tool <a href='https://github.com/tomasplsek/CADET'>(CADET)</a></h1>", unsafe_allow_html=True)
173
  # st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
174
  # st.markdown("To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities!")
175
  # st.markdown("Input images should be FITS files in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
@@ -177,10 +177,10 @@ with col:
177
 
178
  # #F3F4F6
179
  st.markdown("<div style='border-radius:5px;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px;line-height:140%;font-size:120%;background-color:#FFFFFF;'>\
180
- Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from <em>Chandra</em> images of early-type galaxies, groups, and clusters.\
181
  <br style='margin-bottom: 6px'>To use this tool:<br><b>1)</b> upload your FITS file<br><b>2)</b> select the scale of interest<br><b>3)</b> make a prediction<br><b>4)</b> decompose into individual cavities\
182
  <br style='margin-bottom: 6px'>If you use this tool in your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>.\
183
- </div><br>", unsafe_allow_html=True)
184
 
185
  # Input images should be FITS files in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
186
  # (<a href='https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html'>dmfilth</a>). <br><br>\
@@ -242,9 +242,13 @@ with col5: decompose = st.button('Decompose', key="decompose")
242
  _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
243
 
244
  if uploaded_file is not None:
 
 
 
 
245
  image = np.log10(data+1)
246
  plot_image(image, scale)
247
-
248
  if detect or threshold or st.session_state.get("decompose", False):
249
  fname = uploaded_file.name.strip(".fits")
250
 
 
169
  with col:
170
  with st.container():
171
  # Create heading and description
172
+ st.markdown("<h1 align='center'>Cavity Detection Tool (CADET)</h1>", unsafe_allow_html=True)
173
  # st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
174
  # st.markdown("To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities!")
175
  # st.markdown("Input images should be FITS files in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
 
177
 
178
  # #F3F4F6
179
  st.markdown("<div style='border-radius:5px;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px;line-height:140%;font-size:120%;background-color:#FFFFFF;'>\
180
+ Cavity Detection Tool <a href='https://github.com/tomasplsek/CADET'>(CADET)</a> is a machine learning pipeline trained to detect X-ray cavities from <em>Chandra</em> images of early-type galaxies, groups, and clusters.\
181
  <br style='margin-bottom: 6px'>To use this tool:<br><b>1)</b> upload your FITS file<br><b>2)</b> select the scale of interest<br><b>3)</b> make a prediction<br><b>4)</b> decompose into individual cavities\
182
  <br style='margin-bottom: 6px'>If you use this tool in your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>.\
183
+ </div>", unsafe_allow_html=True)
184
 
185
  # Input images should be FITS files in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
186
  # (<a href='https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html'>dmfilth</a>). <br><br>\
 
242
  _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
243
 
244
  if uploaded_file is not None:
245
+ # NORMALIZE IMAGE
246
+ MIN = np.min(np.where(image == 0, 1, image))
247
+ if MIN < 1: image = image / MIN
248
+
249
  image = np.log10(data+1)
250
  plot_image(image, scale)
251
+
252
  if detect or threshold or st.session_state.get("decompose", False):
253
  fname = uploaded_file.name.strip(".fits")
254