Update app.py
Browse files
app.py
CHANGED
@@ -192,7 +192,7 @@ with col_1:
|
|
192 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
|
193 |
|
194 |
with col_2:
|
195 |
-
st.markdown("<br style='margin:
|
196 |
example = st.button("Example")
|
197 |
|
198 |
# with col_2:
|
@@ -212,10 +212,11 @@ with col_2:
|
|
212 |
if uploaded_file is not None:
|
213 |
data, wcs = load_file(uploaded_file)
|
214 |
os.system(f'mkdir -p {uploaded_file.name.strip(".fits")}')
|
|
|
215 |
|
216 |
if example:
|
217 |
-
|
218 |
-
data, wcs = load_file("
|
219 |
|
220 |
if "data" not in locals():
|
221 |
data = np.zeros((128,128))
|
@@ -249,7 +250,7 @@ with col5: decompose = st.button('Decompose', key="decompose")
|
|
249 |
# Make two columns for plots
|
250 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
251 |
|
252 |
-
if uploaded_file is not None:
|
253 |
# NORMALIZE IMAGE
|
254 |
MIN = np.min(np.where(data == 0, 1, data))
|
255 |
if MIN < 1: data = data / MIN
|
@@ -258,7 +259,6 @@ if uploaded_file is not None:
|
|
258 |
plot_image(image, scale)
|
259 |
|
260 |
if detect or threshold or st.session_state.get("decompose", False):
|
261 |
-
fname = uploaded_file.name.strip(".fits")
|
262 |
|
263 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
264 |
|
|
|
192 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'], on_change=reset_threshold)
|
193 |
|
194 |
with col_2:
|
195 |
+
st.markdown("<br style='margin:18px 0'>", unsafe_allow_html=True)
|
196 |
example = st.button("Example")
|
197 |
|
198 |
# with col_2:
|
|
|
212 |
if uploaded_file is not None:
|
213 |
data, wcs = load_file(uploaded_file)
|
214 |
os.system(f'mkdir -p {uploaded_file.name.strip(".fits")}')
|
215 |
+
fname = uploaded_file.name.strip(".fits")
|
216 |
|
217 |
if example:
|
218 |
+
fname = "NGC4649_example"
|
219 |
+
data, wcs = load_file(f"{fname}.fits")
|
220 |
|
221 |
if "data" not in locals():
|
222 |
data = np.zeros((128,128))
|
|
|
250 |
# Make two columns for plots
|
251 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
252 |
|
253 |
+
if (uploaded_file is not None) or example:
|
254 |
# NORMALIZE IMAGE
|
255 |
MIN = np.min(np.where(data == 0, 1, data))
|
256 |
if MIN < 1: data = data / MIN
|
|
|
259 |
plot_image(image, scale)
|
260 |
|
261 |
if detect or threshold or st.session_state.get("decompose", False):
|
|
|
262 |
|
263 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
264 |
|