Update app.py
Browse files
app.py
CHANGED
@@ -158,18 +158,20 @@ if uploaded_file is not None:
|
|
158 |
col1.subheader("Input image")
|
159 |
col3.subheader("Prediction")
|
160 |
col5.subheader("Decomposed")
|
|
|
|
|
161 |
|
162 |
with col1:
|
163 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
|
164 |
max_scale = int(data.shape[0] // 128)
|
165 |
-
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
166 |
scale = int(scale.split("x")[0]) // 128
|
167 |
|
168 |
with col3:
|
169 |
detect = st.button('Detect')
|
170 |
|
171 |
with col5:
|
172 |
-
decompose = st.button('
|
173 |
|
174 |
# Make two columns for plots
|
175 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
@@ -180,7 +182,7 @@ if uploaded_file is not None:
|
|
180 |
|
181 |
with col4:
|
182 |
st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
183 |
-
threshold = st.slider("", 0.0, 1.0,
|
184 |
|
185 |
if detect or threshold:
|
186 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
@@ -189,7 +191,7 @@ if uploaded_file is not None:
|
|
189 |
|
190 |
# try: y_pred = np.load("pred.npy")
|
191 |
# except: y_pred = np.zeros((128,128))
|
192 |
-
try: y_pred
|
193 |
except: y_pred = np.zeros((128,128))
|
194 |
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
195 |
# np.save("thresh.npy", y_pred)
|
@@ -214,7 +216,7 @@ if uploaded_file is not None:
|
|
214 |
|
215 |
# try: image_decomposed = np.load("decomposed.npy")
|
216 |
# except: image_decomposed = np.zeros((128,128))
|
217 |
-
try: image_decomposed
|
218 |
except: image_decomposed = np.zeros((128,128))
|
219 |
plot_decomposed(image_decomposed)
|
220 |
|
|
|
158 |
col1.subheader("Input image")
|
159 |
col3.subheader("Prediction")
|
160 |
col5.subheader("Decomposed")
|
161 |
+
|
162 |
+
st.session_state.default = 0.0
|
163 |
|
164 |
with col1:
|
165 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
|
166 |
max_scale = int(data.shape[0] // 128)
|
167 |
+
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden", on_change=lambda _: st.session_state.default = 0.0)
|
168 |
scale = int(scale.split("x")[0]) // 128
|
169 |
|
170 |
with col3:
|
171 |
detect = st.button('Detect')
|
172 |
|
173 |
with col5:
|
174 |
+
decompose = st.button('Decompose')
|
175 |
|
176 |
# Make two columns for plots
|
177 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
|
|
182 |
|
183 |
with col4:
|
184 |
st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
185 |
+
threshold = st.slider("", 0.0, 1.0, st.session_state.default, 0.05, label_visibility="hidden")
|
186 |
|
187 |
if detect or threshold:
|
188 |
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
|
|
191 |
|
192 |
# try: y_pred = np.load("pred.npy")
|
193 |
# except: y_pred = np.zeros((128,128))
|
194 |
+
try: _ = y_pred
|
195 |
except: y_pred = np.zeros((128,128))
|
196 |
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
197 |
# np.save("thresh.npy", y_pred)
|
|
|
216 |
|
217 |
# try: image_decomposed = np.load("decomposed.npy")
|
218 |
# except: image_decomposed = np.zeros((128,128))
|
219 |
+
try: _ = image_decomposed
|
220 |
except: image_decomposed = np.zeros((128,128))
|
221 |
plot_decomposed(image_decomposed)
|
222 |
|