Plsek commited on
Commit
0a8b766
·
1 Parent(s): d3eb8f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -24
app.py CHANGED
@@ -87,7 +87,7 @@ def cut(data0, wcs0, scale=1):
87
  return data, wcs
88
 
89
  # Define function to apply cutting and produce a prediction
90
- @st.cache
91
  def cut_n_predict(data, wcs, scale):
92
  data, wcs = cut(data, wcs, scale=scale)
93
  image = np.log10(data+1)
@@ -102,7 +102,7 @@ def cut_n_predict(data, wcs, scale):
102
  return y_pred, wcs
103
 
104
  # Define function to decompose prediction into individual cavities
105
- @st.cache
106
  def decompose_cavity(pred, th2=0.7, amin=6):
107
  X, Y = pred.nonzero()
108
  data = np.array([X,Y]).reshape(2, -1)
@@ -141,12 +141,12 @@ def decompose_cavity(pred, th2=0.7, amin=6):
141
 
142
  return image_decomposed
143
 
144
- @st.cache
145
- def load_file(fname):
146
- with fits.open(fname) as hdul:
147
- data = hdul[0].data
148
- wcs = WCS(hdul[0].header)
149
- return data, wcs
150
 
151
  # def change_scale():
152
  # del st.session_state["threshold"]
@@ -207,31 +207,31 @@ if uploaded_file is not None:
207
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden") #, on_change=change_scale)
208
  scale = int(scale.split("x")[0]) // 128
209
 
210
- # Detect button
211
- with col3: detect = st.button('Detect', key="detect")
212
 
213
- # Threshold slider
214
- with col4:
215
- st.markdown("")
216
- # st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
217
- threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
218
 
219
- # Decompose button
220
- with col5: decompose = st.button('Decompose', key="decompose")
221
 
222
- # Make two columns for plots
223
- _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
224
 
225
  image = np.log10(data+1)
226
  plot_image(image, scale)
227
 
228
- if detect or threshold:
229
- # if st.session_state.get("detect", True):
230
- y_pred, wcs = cut_n_predict(data, wcs, scale)
231
 
232
- y_pred_th = np.where(y_pred > threshold, y_pred, 0)
233
 
234
- plot_prediction(y_pred_th)
235
 
236
  # if decompose or st.session_state.get("download", False):
237
  # image_decomposed = decompose_cavity(y_pred_th)
 
87
  return data, wcs
88
 
89
  # Define function to apply cutting and produce a prediction
90
+ # @st.cache
91
  def cut_n_predict(data, wcs, scale):
92
  data, wcs = cut(data, wcs, scale=scale)
93
  image = np.log10(data+1)
 
102
  return y_pred, wcs
103
 
104
  # Define function to decompose prediction into individual cavities
105
+ # @st.cache
106
  def decompose_cavity(pred, th2=0.7, amin=6):
107
  X, Y = pred.nonzero()
108
  data = np.array([X,Y]).reshape(2, -1)
 
141
 
142
  return image_decomposed
143
 
144
+ # @st.cache
145
+ # def load_file(fname):
146
+ # with fits.open(fname) as hdul:
147
+ # data = hdul[0].data
148
+ # wcs = WCS(hdul[0].header)
149
+ # return data, wcs
150
 
151
  # def change_scale():
152
  # del st.session_state["threshold"]
 
207
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden") #, on_change=change_scale)
208
  scale = int(scale.split("x")[0]) // 128
209
 
210
+ # # Detect button
211
+ # with col3: detect = st.button('Detect', key="detect")
212
 
213
+ # # Threshold slider
214
+ # with col4:
215
+ # st.markdown("")
216
+ # # st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
217
+ # threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
218
 
219
+ # # Decompose button
220
+ # with col5: decompose = st.button('Decompose', key="decompose")
221
 
222
+ # # Make two columns for plots
223
+ # _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
224
 
225
  image = np.log10(data+1)
226
  plot_image(image, scale)
227
 
228
+ # if detect or threshold:
229
+ # # if st.session_state.get("detect", True):
230
+ # y_pred, wcs = cut_n_predict(data, wcs, scale)
231
 
232
+ # y_pred_th = np.where(y_pred > threshold, y_pred, 0)
233
 
234
+ # plot_prediction(y_pred_th)
235
 
236
  # if decompose or st.session_state.get("download", False):
237
  # image_decomposed = decompose_cavity(y_pred_th)