Plsek commited on
Commit
044c349
·
1 Parent(s): 3c7556d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -175,13 +175,15 @@ with col:
175
  # st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
176
  # st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
177
 
178
- st.markdown("<div style='border-radius:5px;background-color:#F3F4F6;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px'>\
179
  Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. <br>\
180
  To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities! <br>\
181
  Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
182
  (<a href='https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html'>dmfilth</a>). <br><br>\
183
  If you use this tool for your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>\
184
- </div>", unsafe_allow_html=True)
 
 
185
 
186
  # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
187
 
 
175
  # st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
176
  # st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
177
 
178
+ st.markdown("<div style='border-radius:5px;background-color:#F3F4F6;padding-top:8px;padding-bottom:8px;padding-left:14px;padding-right:14px;line-height:140%;font-size:120%'>\
179
  Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. <br>\
180
  To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities! <br>\
181
  Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background \
182
  (<a href='https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html'>dmfilth</a>). <br><br>\
183
  If you use this tool for your research, please cite <a href='https://arxiv.org/abs/2304.05457'>Plšek et al. 2023</a>\
184
+ </div><br>", unsafe_allow_html=True)
185
+
186
+
187
 
188
  # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
189