File size: 1,953 Bytes
6414f94
 
 
 
 
 
 
 
 
 
d26c581
6414f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26c581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6414f94
 
 
 
d26c581
 
 
6414f94
 
 
 
 
d26c581
6414f94
 
 
 
d26c581
 
 
6414f94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from astropy.io import fits
from astropy.wcs import WCS
from astropy.nddata import Cutout2D
from tensorflow.keras.models import load_model

st.set_option('deprecation.showPyplotGlobalUse', False)

st.title("Cavity Detection Tool")

model = load_model("CADET.hdf5")

# Define function to plot the uploaded image
def plot_image(image_array, pred):
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    plt.imshow(image_array, origin="lower")
    plt.axis('off')

    plt.subplot(1, 2, 2)
    plt.imshow(pred, origin="lower")
    plt.axis('off')
    st.pyplot()

def cut(data0, wcs0, scale=1):
    shape = data0.shape[0]
    x0 = shape / 2
    size = 128 * scale
    cutout = Cutout2D(data0, (x0, x0), (size, size), wcs=wcs0)
    data, wcs = cutout.data, cutout.wcs

    # REGRID DATA
    factor = size // 128
    data = data.reshape(128, factor, 128, factor).mean(-1).mean(1)
    
    # REGIRD WCS
    ra, dec = wcs.wcs_pix2world(np.array([[63, 63]]),0)[0]
    wcs.wcs.cdelt[0] = wcs.wcs.cdelt[0] * factor
    wcs.wcs.cdelt[1] = wcs.wcs.cdelt[1] * factor
    wcs.wcs.crval[0] = ra
    wcs.wcs.crval[1] = dec
    wcs.wcs.crpix[0] = 64 / factor
    wcs.wcs.crpix[1] = 64 / factor

   return data, wcs

# Create file uploader widget
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])

# Add a slider to change the scale
scale = st.slider("Scale", 1, 4, 1, 1)

# If file is uploaded, read in the data and plot it
if uploaded_file is not None:
    with fits.open(uploaded_file) as hdul:
        data = hdul[0].data
        wcs = WCS(hdul[0].header)
        data, wcs = cut(data, wcs, scale=scale)

        image_data = np.log10(data+1)
        pred = model.predict(image_data.reshape(1, 128, 128, 1)).reshape(128 ,128)

        ccd = CCDData(pred, unit="adu", wcs=wcs)
        ccd.write(f"predicted.fits", overwrite=True)

        plot_image(image_data, pred)