File size: 1,323 Bytes
6414f94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from astropy.io import fits
from astropy.wcs import WCS
from astropy.nddata import Cutout2D
from tensorflow.keras.models import load_model
st.set_option('deprecation.showPyplotGlobalUse', False)
st.title("FITS Image Viewer")
model = load_model("CADET.hdf5")
# Define function to plot the uploaded image
def plot_image(image_array, pred):
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(image_array, origin="lower")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(pred, origin="lower")
plt.axis('off')
st.pyplot()
def cut(data0, wcs0, scale=1):
shape = data0.shape[0]
x0 = shape / 2
size = 128 * scale
cutout = Cutout2D(data0, (x0, x0), (size, size), wcs=wcs0)
return cutout.data, cutout.wcs
# Create file uploader widget
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
# If file is uploaded, read in the data and plot it
if uploaded_file is not None:
with fits.open(uploaded_file) as hdul:
data = hdul[0].data
wcs = WCS(hdul[0].header)
data, wcs = cut(data, wcs, scale=1)
image_data = np.log10(data+1)
pred = model.predict(image_data.reshape(1, 128, 128, 1)).reshape(128 ,128)
plot_image(image_data, pred)
|