Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,7 +27,7 @@ embeddings_text = embeddings_data["text_with_context"].tolist()
|
|
| 27 |
|
| 28 |
#Importing the classifier/router (deberta)
|
| 29 |
classifier_model = AutoModelForSequenceClassification.from_pretrained("AgentPublic/chatrag-deberta")
|
| 30 |
-
|
| 31 |
|
| 32 |
#Importing the actual generative LLM (llama-based)
|
| 33 |
model_name = "Pclanglais/Tchap"
|
|
@@ -40,7 +40,7 @@ system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n
|
|
| 40 |
#Function to guess whether we use the RAG or not.
|
| 41 |
def classification_chatrag(query):
|
| 42 |
print(query)
|
| 43 |
-
encoding =
|
| 44 |
encoding = {k: v.to(classifier_model.device) for k,v in encoding.items()}
|
| 45 |
|
| 46 |
outputs = classifier_model(**encoding)
|
|
|
|
| 27 |
|
| 28 |
#Importing the classifier/router (deberta)
|
| 29 |
classifier_model = AutoModelForSequenceClassification.from_pretrained("AgentPublic/chatrag-deberta")
|
| 30 |
+
classifier_tokenizer = AutoTokenizer.from_pretrained("AgentPublic/chatrag-deberta")
|
| 31 |
|
| 32 |
#Importing the actual generative LLM (llama-based)
|
| 33 |
model_name = "Pclanglais/Tchap"
|
|
|
|
| 40 |
#Function to guess whether we use the RAG or not.
|
| 41 |
def classification_chatrag(query):
|
| 42 |
print(query)
|
| 43 |
+
encoding = classifier_tokenizer(query, return_tensors="pt")
|
| 44 |
encoding = {k: v.to(classifier_model.device) for k,v in encoding.items()}
|
| 45 |
|
| 46 |
outputs = classifier_model(**encoding)
|