Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import subprocess | |
from typing import Callable, Dict, List | |
import psutil | |
import torch | |
logger = logging.getLogger(__name__) | |
def log_available_gpu_memory(): | |
""" | |
Logs the available GPU memory for each available GPU device. | |
If no GPUs are available, logs "No GPUs available". | |
Returns: | |
None | |
""" | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
memory_info = subprocess.check_output( | |
f"nvidia-smi -i {i} --query-gpu=memory.free --format=csv,nounits,noheader", | |
shell=True, | |
) | |
memory_info = str(memory_info).split("\\")[0][2:] | |
logger.info(f"GPU {i} memory available: {memory_info} MiB") | |
else: | |
logger.info("No GPUs available") | |
def log_available_ram(): | |
""" | |
Logs the amount of available RAM in gigabytes. | |
Returns: | |
None | |
""" | |
memory_info = psutil.virtual_memory() | |
# convert bytes to GB | |
logger.info(f"Available RAM: {memory_info.available / (1024.0 ** 3):.2f} GB") | |
def log_files_and_subdirs(directory_path: str): | |
""" | |
Logs all files and subdirectories in the specified directory. | |
Args: | |
directory_path (str): The path to the directory to log. | |
Returns: | |
None | |
""" | |
# Check if the directory exists | |
if os.path.exists(directory_path) and os.path.isdir(directory_path): | |
for dirpath, dirnames, filenames in os.walk(directory_path): | |
logger.info(f"Directory: {dirpath}") | |
for filename in filenames: | |
logger.info(f"File: {os.path.join(dirpath, filename)}") | |
for dirname in dirnames: | |
logger.info(f"Sub-directory: {os.path.join(dirpath, dirname)}") | |
else: | |
logger.info(f"The directory '{directory_path}' does not exist") | |
class MockedPipeline: | |
""" | |
A mocked pipeline class that is used as a replacement to the HF pipeline class. | |
Attributes: | |
----------- | |
task : str | |
The task of the pipeline, which is text-generation. | |
f : Callable[[str], str] | |
A function that takes a prompt string as input and returns a generated text string. | |
""" | |
task: str = "text-generation" | |
def __init__(self, f: Callable[[str], str]): | |
self.f = f | |
def __call__(self, prompt: str) -> List[Dict[str, str]]: | |
""" | |
Calls the pipeline with a given prompt and returns a list of generated text. | |
Parameters: | |
----------- | |
prompt : str | |
The prompt string to generate text from. | |
Returns: | |
-------- | |
List[Dict[str, str]] | |
A list of dictionaries, where each dictionary contains a generated_text key with the generated text string. | |
""" | |
result = self.f(prompt) | |
return [{"generated_text": f"{prompt}{result}"}] | |