Financial_Bot / app.py
PlantBasedTen's picture
Clarify bot description
a2448a1 verified
raw
history blame
5.94 kB
import argparse
import logging
from pathlib import Path
from threading import Thread
from typing import List
import os
import gradio as gr
logger = logging.getLogger(__name__)
COMET_API_KEY = os.getenv("COMET_API_KEY")
COMET_WORKSPACE = os.getenv("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.getenv("COMET_PROJECT_NAME")
QDRANT_URL = os.getenv("QDRANT_URL")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
def parseargs() -> argparse.Namespace:
"""
Parses command line arguments for the Financial Assistant Bot.
Returns:
argparse.Namespace: An object containing the parsed arguments.
"""
parser = argparse.ArgumentParser(description="Financial Assistant Bot")
parser.add_argument(
"--env-file-path",
type=str,
default=".env",
help="Path to the environment file",
)
parser.add_argument(
"--logging-config-path",
type=str,
default="logging.yaml",
help="Path to the logging configuration file",
)
parser.add_argument(
"--model-cache-dir",
type=str,
default="./model_cache",
help="Path to the directory where the model cache will be stored",
)
parser.add_argument(
"--embedding-model-device",
type=str,
default="cuda:0",
help="Device to use for the embedding model (e.g. 'cpu', 'cuda:0', etc.)",
)
parser.add_argument(
"--debug",
action="store_true",
default=False,
help="Enable debug mode",
)
return parser.parse_args()
args = parseargs()
# === Load Bot ===
def load_bot(
# env_file_path: str = ".env",
logging_config_path: str = "logging.yaml",
model_cache_dir: str = "./model_cache",
embedding_model_device: str = "cuda:0",
debug: bool = False,
):
"""
Load the financial assistant bot in production or development mode based on the `debug` flag
In DEV mode the embedding model runs on CPU and the fine-tuned LLM is mocked.
Otherwise, the embedding model runs on GPU and the fine-tuned LLM is used.
Args:
env_file_path (str): Path to the environment file.
logging_config_path (str): Path to the logging configuration file.
model_cache_dir (str): Path to the directory where the model cache is stored.
embedding_model_device (str): Device to use for the embedding model.
debug (bool): Flag to indicate whether to run the bot in debug mode or not.
Returns:
FinancialBot: An instance of the FinancialBot class.
"""
from financial_bot import initialize
# Be sure to initialize the environment variables before importing any other modules.
# initialize(logging_config_path=logging_config_path, env_file_path=env_file_path)
initialize(logging_config_path=logging_config_path)
from financial_bot import utils
from financial_bot.langchain_bot import FinancialBot
logger.info("#" * 100)
utils.log_available_gpu_memory()
utils.log_available_ram()
logger.info("#" * 100)
bot = FinancialBot(
model_cache_dir=Path(model_cache_dir) if model_cache_dir else None,
embedding_model_device=embedding_model_device,
streaming=True,
debug=debug,
)
return bot
bot = load_bot(
# env_file_path=args.env_file_path,
logging_config_path=args.logging_config_path,
model_cache_dir=args.model_cache_dir,
embedding_model_device=args.embedding_model_device,
debug=args.debug,
)
# === Gradio Interface ===
def predict(message: str, history: List[List[str]], about_me: str) -> str:
"""
Predicts a response to a given message using the financial_bot Gradio UI.
Args:
message (str): The message to generate a response for.
history (List[List[str]]): A list of previous conversations.
about_me (str): A string describing the user.
Returns:
str: The generated response.
"""
generate_kwargs = {
"about_me": about_me,
"question": message,
"to_load_history": history,
}
if bot.is_streaming:
t = Thread(target=bot.answer, kwargs=generate_kwargs)
t.start()
for partial_answer in bot.stream_answer():
yield partial_answer
else:
yield bot.answer(**generate_kwargs)
demo = gr.ChatInterface(
predict,
textbox=gr.Textbox(
placeholder="Ask me a financial question",
label="Financial Question",
container=False,
scale=7,
),
additional_inputs=[
gr.Textbox(
"I am a student and I have some money that I want to invest.",
label="About Me",
)
],
title="Friendly Free Financial Assistant",
description="Ask me any financial or crypto market questions, and I will do my best to provide useful insight. My advice is based on current \
finance news which is stored in a Qdrant vector database. I run on a fine-tuned Mistral-7B-Instruct-v0.2 model to provide answers. Some sample \
questions and additional inputs are below.",
theme="soft",
examples=[
[
"What's your opinion on investing in startup companies?",
"I am a 30 year old graphic designer. I want to invest in something with potential for high returns.",
],
[
"What's your opinion on investing in AI-related companies?",
"I'm a 25 year old entrepreneur interested in emerging technologies. \
I'm willing to take calculated risks for potential high returns.",
],
[
"Do you think advancements in gene therapy are impacting biotech company valuations?",
"I'm a 31 year old scientist. I'm curious about the potential of biotech investments.",
],
],
cache_examples=False,
retry_btn=None,
undo_btn=None,
clear_btn="Clear",
)
if __name__ == "__main__":
demo.queue().launch()