Spaces:
Runtime error
Runtime error
File size: 9,477 Bytes
bb59984 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import logging
import os
from pathlib import Path
from typing import List, Optional, Tuple
import torch
from comet_ml import API
from langchain.llms import HuggingFacePipeline
from peft import LoraConfig, PeftConfig, PeftModel
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
pipeline,
)
from financial_bot import constants
from financial_bot.utils import MockedPipeline
logger = logging.getLogger(__name__)
def download_from_model_registry(
model_id: str, cache_dir: Optional[Path] = None
) -> Path:
"""
Downloads a model from the Comet ML Learning model registry.
Args:
model_id (str): The ID of the model to download, in the format "workspace/model_name:version".
cache_dir (Optional[Path]): The directory to cache the downloaded model in. Defaults to the value of
`constants.CACHE_DIR`.
Returns:
Path: The path to the downloaded model directory.
"""
if cache_dir is None:
cache_dir = constants.CACHE_DIR
output_folder = cache_dir / "models" / model_id
already_downloaded = output_folder.exists()
if not already_downloaded:
workspace, model_id = model_id.split("/")
model_name, version = model_id.split(":")
api = API()
model = api.get_model(workspace=workspace, model_name=model_name)
model.download(version=version, output_folder=output_folder, expand=True)
else:
logger.info(f"Model {model_id=} already downloaded to: {output_folder}")
subdirs = [d for d in output_folder.iterdir() if d.is_dir()]
if len(subdirs) == 1:
model_dir = subdirs[0]
else:
raise RuntimeError(
f"There should be only one directory inside the model folder. \
Check the downloaded model at: {output_folder}"
)
logger.info(f"Model {model_id=} downloaded from the registry to: {model_dir}")
return model_dir
class StopOnTokens(StoppingCriteria):
"""
A stopping criteria that stops generation when a specific token is generated.
Args:
stop_ids (List[int]): A list of token ids that will trigger the stopping criteria.
"""
def __init__(self, stop_ids: List[int]):
super().__init__()
self._stop_ids = stop_ids
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
"""
Check if the last generated token is in the stop_ids list.
Args:
input_ids (torch.LongTensor): The input token ids.
scores (torch.FloatTensor): The scores of the generated tokens.
Returns:
bool: True if the last generated token is in the stop_ids list, False otherwise.
"""
for stop_id in self._stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def build_huggingface_pipeline(
llm_model_id: str,
llm_lora_model_id: str,
max_new_tokens: int = constants.LLM_INFERNECE_MAX_NEW_TOKENS,
temperature: float = constants.LLM_INFERENCE_TEMPERATURE,
gradient_checkpointing: bool = False,
use_streamer: bool = False,
cache_dir: Optional[Path] = None,
debug: bool = False,
) -> Tuple[HuggingFacePipeline, Optional[TextIteratorStreamer]]:
"""
Builds a HuggingFace pipeline for text generation using a custom LLM + Finetuned checkpoint.
Args:
llm_model_id (str): The ID or path of the LLM model.
llm_lora_model_id (str): The ID or path of the LLM LoRA model.
max_new_tokens (int, optional): The maximum number of new tokens to generate. Defaults to 128.
temperature (float, optional): The temperature to use for sampling. Defaults to 0.7.
gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
use_streamer (bool, optional): Whether to use a text iterator streamer. Defaults to False.
cache_dir (Optional[Path], optional): The directory to use for caching. Defaults to None.
debug (bool, optional): Whether to use a mocked pipeline for debugging. Defaults to False.
Returns:
Tuple[HuggingFacePipeline, Optional[TextIteratorStreamer]]: A tuple containing the HuggingFace pipeline
and the text iterator streamer (if used).
"""
if debug is True:
return (
HuggingFacePipeline(
pipeline=MockedPipeline(f=lambda _: "You are doing great!")
),
None,
)
model, tokenizer, _ = build_qlora_model(
pretrained_model_name_or_path=llm_model_id,
peft_pretrained_model_name_or_path=llm_lora_model_id,
gradient_checkpointing=gradient_checkpointing,
cache_dir=cache_dir,
)
model.eval()
if use_streamer:
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
stop_on_tokens = StopOnTokens(stop_ids=[tokenizer.eos_token_id])
stopping_criteria = StoppingCriteriaList([stop_on_tokens])
else:
streamer = None
stopping_criteria = StoppingCriteriaList([])
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
temperature=temperature,
streamer=streamer,
stopping_criteria=stopping_criteria,
)
hf = HuggingFacePipeline(pipeline=pipe)
return hf, streamer
def build_qlora_model(
pretrained_model_name_or_path: str = "tiiuae/falcon-7b-instruct",
peft_pretrained_model_name_or_path: Optional[str] = None,
gradient_checkpointing: bool = True,
cache_dir: Optional[Path] = None,
) -> Tuple[AutoModelForCausalLM, AutoTokenizer, PeftConfig]:
"""
Function that builds a QLoRA LLM model based on the given HuggingFace name:
1. Create and prepare the bitsandbytes configuration for QLoRa's quantization
2. Download, load, and quantize on-the-fly Falcon-7b
3. Create and prepare the LoRa configuration
4. Load and configuration Falcon-7B's tokenizer
Args:
pretrained_model_name_or_path (str): The name or path of the pretrained model to use.
peft_pretrained_model_name_or_path (Optional[str]): The name or path of the PEFT pretrained model to use.
gradient_checkpointing (bool): Whether to use gradient checkpointing or not.
cache_dir (Optional[Path]): The directory to cache the downloaded models.
Returns:
Tuple[AutoModelForCausalLM, AutoTokenizer, PeftConfig]:
A tuple containing the QLoRA LLM model, tokenizer, and PEFT config.
"""
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path,
revision="main",
quantization_config=bnb_config,
load_in_4bit=True,
device_map="auto",
trust_remote_code=False,
cache_dir=str(cache_dir) if cache_dir else None,
)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=False,
truncation=True,
cache_dir=str(cache_dir) if cache_dir else None,
)
if tokenizer.pad_token_id is None:
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
with torch.no_grad():
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
if peft_pretrained_model_name_or_path:
is_model_name = not os.path.isdir(peft_pretrained_model_name_or_path)
if is_model_name:
logger.info(
f"Downloading {peft_pretrained_model_name_or_path} from CometML Model Registry:"
)
peft_pretrained_model_name_or_path = download_from_model_registry(
model_id=peft_pretrained_model_name_or_path,
cache_dir=cache_dir,
)
logger.info(f"Loading Lora Confing from: {peft_pretrained_model_name_or_path}")
lora_config = LoraConfig.from_pretrained(peft_pretrained_model_name_or_path)
assert (
lora_config.base_model_name_or_path == pretrained_model_name_or_path
), f"Lora Model trained on different base model than the one requested: \
{lora_config.base_model_name_or_path} != {pretrained_model_name_or_path}"
logger.info(f"Loading Peft Model from: {peft_pretrained_model_name_or_path}")
model = PeftModel.from_pretrained(model, peft_pretrained_model_name_or_path)
else:
lora_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
target_modules=["query_key_value"],
)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
model.config.use_cache = (
False # Gradient checkpointing is not compatible with caching.
)
else:
model.gradient_checkpointing_disable()
model.config.use_cache = True # It is good practice to enable caching when using the model for inference.
return model, tokenizer, lora_config
|