File size: 5,706 Bytes
200cf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import logging
from pathlib import Path
from typing import List, Tuple

import fire

logger = logging.getLogger(__name__)

# === Bot Loaders ===


def load_bot(
    env_file_path: str = ".env",
    logging_config_path: str = "logging.yaml",
    model_cache_dir: str = "/model_cache",
    embedding_model_device: str = "cuda:0",
    debug: bool = False,
):
    """
    Load the financial assistant bot in production or development mode based on the `debug` flag

    In DEV mode the embedding model runs on CPU and the fine-tuned LLM is mocked.
    Otherwise, the embedding model runs on GPU and the fine-tuned LLM is used.

    Args:
        env_file_path (str): Path to the environment file.
        logging_config_path (str): Path to the logging configuration file.
        model_cache_dir (str): Path to the directory where the model cache is stored.
        embedding_model_device (str): Device to use for the embedding model.
        debug (bool): Flag to indicate whether to run the bot in debug mode or not.

    Returns:
        FinancialBot: An instance of the FinancialBot class.
    """

    from financial_bot import initialize

    # Be sure to initialize the environment variables before importing any other modules.
    initialize(logging_config_path=logging_config_path, env_file_path=env_file_path)

    from financial_bot import utils
    from financial_bot.langchain_bot import FinancialBot

    logger.info("#" * 100)
    utils.log_available_gpu_memory()
    utils.log_available_ram()
    logger.info("#" * 100)

    bot = FinancialBot(
        model_cache_dir=Path(model_cache_dir) if model_cache_dir else None,
        embedding_model_device=embedding_model_device,
        debug=debug,
    )

    return bot


def load_bot_dev(
    env_file_path: str = ".env",
    logging_config_path: str = "logging.yaml",
    model_cache_dir: str = "./model_cache",
):
    """
    Load the Financial Assistant Bot in dev mode: the embedding model runs on CPU and the LLM is mocked.

    Args:
        env_file_path (str): Path to the environment file.
        logging_config_path (str): Path to the logging configuration file.
        model_cache_dir (str): Path to the directory where the model cache is stored.

    Returns:
        The loaded Financial Assistant Bot in dev mode.
    """

    return load_bot(
        env_file_path=env_file_path,
        logging_config_path=logging_config_path,
        model_cache_dir=model_cache_dir,
        embedding_model_device="cpu",
        debug=True,
    )


# === Bot Runners ===


@financial_bot.rest_api(keep_warm_seconds=300, loader=load_bot)
def run(**inputs):
    """
    Run the bot under the Beam RESTful API endpoint.

     Args:
        inputs (dict): A dictionary containing the following keys:
            - context: The bot instance.
            - about_me (str): Information about the user.
            - question (str): The user's question.
            - history (list): A list of previous conversations (optional).

    Returns:
        str: The bot's response to the user's question.
    """

    response = _run(**inputs)

    return response


@financial_bot_dev.rest_api(keep_warm_seconds=300, loader=load_bot_dev)
def run_dev(**inputs):
    """
    Run the bot under the Beam RESTful API endpoint [Dev Mode].

     Args:
        inputs (dict): A dictionary containing the following keys:
            - context: The bot instance.
            - about_me (str): Information about the user.
            - question (str): The user's question.
            - history (list): A list of previous conversations (optional).

    Returns:
        str: The bot's response to the user's question.
    """

    response = _run(**inputs)

    return response


def run_local(
    about_me: str,
    question: str,
    history: List[Tuple[str, str]] = None,
    debug: bool = False,
):
    """
    Run the bot locally in production or dev mode.

    Args:
        about_me (str): A string containing information about the user.
        question (str): A string containing the user's question.
        history (List[Tuple[str, str]], optional): A list of tuples containing the user's previous questions
            and the bot's responses. Defaults to None.
        debug (bool, optional): A boolean indicating whether to run the bot in debug mode. Defaults to False.

    Returns:
        str: A string containing the bot's response to the user's question.
    """

    if debug is True:
        bot = load_bot_dev(model_cache_dir=None)
    else:
        bot = load_bot(model_cache_dir=None)

    inputs = {
        "about_me": about_me,
        "question": question,
        "history": history,
        "context": bot,
    }

    response = _run(**inputs)

    return response


def _run(**inputs):
    """
    Central function that calls the bot and returns the response.

    Args:
        inputs (dict): A dictionary containing the following keys:
            - context: The bot instance.
            - about_me (str): Information about the user.
            - question (str): The user's question.
            - history (list): A list of previous conversations (optional).

    Returns:
        str: The bot's response to the user's question.
    """

    from financial_bot import utils

    logger.info("#" * 100)
    utils.log_available_gpu_memory()
    utils.log_available_ram()
    logger.info("#" * 100)

    bot = inputs["context"]
    input_payload = {
        "about_me": inputs["about_me"],
        "question": inputs["question"],
        "to_load_history": inputs["history"] if "history" in inputs else [],
    }
    response = bot.answer(**input_payload)

    return response


if __name__ == "__main__":
    fire.Fire(run_local)