Spaces:
Runtime error
Runtime error
| import argparse | |
| import logging | |
| import os | |
| import pathlib | |
| import time | |
| import tempfile | |
| from pathlib import Path | |
| temp = pathlib.WindowsPath | |
| pathlib.WindowsPath = pathlib.PosixPath | |
| os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
| import torch | |
| import torchaudio | |
| import random | |
| import numpy as np | |
| from data.tokenizer import ( | |
| AudioTokenizer, | |
| tokenize_audio, | |
| ) | |
| from data.collation import get_text_token_collater | |
| from models.vallex import VALLE | |
| from utils.g2p import PhonemeBpeTokenizer | |
| from descriptions import * | |
| import gradio as gr | |
| import whisper | |
| torch.set_num_threads(1) | |
| torch.set_num_interop_threads(1) | |
| torch._C._jit_set_profiling_executor(False) | |
| torch._C._jit_set_profiling_mode(False) | |
| torch._C._set_graph_executor_optimize(False) | |
| # torch.manual_seed(42) | |
| lang2token = { | |
| 'zh': "[ZH]", | |
| 'ja': "[JA]", | |
| "en": "[EN]", | |
| } | |
| lang2code = { | |
| 'zh': 0, | |
| 'ja': 1, | |
| "en": 2, | |
| } | |
| token2lang = { | |
| '[ZH]': "zh", | |
| '[JA]': "ja", | |
| "[EN]": "en", | |
| } | |
| code2lang = { | |
| 0: 'zh', | |
| 1: 'ja', | |
| 2: "en", | |
| } | |
| langdropdown2token = { | |
| 'English': "[EN]", | |
| '中文': "[ZH]", | |
| '日本語': "[JA]", | |
| 'mix': "", | |
| } | |
| text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") | |
| text_collater = get_text_token_collater() | |
| device = torch.device("cpu") | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda", 0) | |
| # VALL-E-X model | |
| model = VALLE( | |
| 1024, | |
| 16, | |
| 12, | |
| norm_first=True, | |
| add_prenet=False, | |
| prefix_mode=1, | |
| share_embedding=True, | |
| nar_scale_factor=1.0, | |
| prepend_bos=True, | |
| num_quantizers=8, | |
| ) | |
| checkpoint = torch.load("./epoch-10.pt", map_location='cpu') | |
| missing_keys, unexpected_keys = model.load_state_dict( | |
| checkpoint["model"], strict=True | |
| ) | |
| assert not missing_keys | |
| model.to('cpu') | |
| model.eval() | |
| # Encodec model | |
| audio_tokenizer = AudioTokenizer(device) | |
| # ASR | |
| whisper_model = whisper.load_model("medium") | |
| def clear_prompts(): | |
| try: | |
| path = tempfile.gettempdir() | |
| for eachfile in os.listdir(path): | |
| filename = os.path.join(path, eachfile) | |
| if os.path.isfile(filename) and filename.endswith(".npz"): | |
| lastmodifytime = os.stat(filename).st_mtime | |
| endfiletime = time.time() - 60 | |
| if endfiletime > lastmodifytime: | |
| os.remove(filename) | |
| except: | |
| return | |
| def transcribe_one(model, audio_path): | |
| # load audio and pad/trim it to fit 30 seconds | |
| audio = whisper.load_audio(audio_path) | |
| audio = whisper.pad_or_trim(audio) | |
| # make log-Mel spectrogram and move to the same device as the model | |
| mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| # detect the spoken language | |
| _, probs = model.detect_language(mel) | |
| print(f"Detected language: {max(probs, key=probs.get)}") | |
| lang = max(probs, key=probs.get) | |
| # decode the audio | |
| options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150) | |
| result = whisper.decode(model, mel, options) | |
| # print the recognized text | |
| print(result.text) | |
| text_pr = result.text | |
| if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": | |
| text_pr += "." | |
| return lang, text_pr | |
| def make_npz_prompt(name, uploaded_audio, recorded_audio): | |
| global model, text_collater, text_tokenizer, audio_tokenizer | |
| clear_prompts() | |
| audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio | |
| sr, wav_pr = audio_prompt | |
| wav_pr = torch.FloatTensor(wav_pr) / 32768 | |
| if wav_pr.size(-1) == 2: | |
| wav_pr = wav_pr.mean(-1, keepdim=False) | |
| text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) | |
| # tokenize audio | |
| encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr.unsqueeze(0), sr)) | |
| audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() | |
| # tokenize text | |
| text_tokens, enroll_x_lens = text_collater( | |
| [ | |
| text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
| ] | |
| ) | |
| message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" | |
| # save as npz file | |
| np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), | |
| audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) | |
| return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") | |
| def make_prompt(name, wav, sr, save=True): | |
| global whisper_model | |
| if not isinstance(wav, torch.FloatTensor): | |
| wav = torch.tensor(wav) | |
| if wav.abs().max() > 1: | |
| wav /= wav.abs().max() | |
| if wav.size(-1) == 2: | |
| wav = wav.mean(-1, keepdim=False) | |
| if wav.ndim == 1: | |
| wav = wav.unsqueeze(0) | |
| assert wav.ndim and wav.size(0) == 1 | |
| torchaudio.save(f"./prompts/{name}.wav", wav, sr) | |
| lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") | |
| lang_token = lang2token[lang] | |
| text = lang_token + text + lang_token | |
| with open(f"./prompts/{name}.txt", 'w') as f: | |
| f.write(text) | |
| if not save: | |
| os.remove(f"./prompts/{name}.wav") | |
| os.remove(f"./prompts/{name}.txt") | |
| torch.cuda.empty_cache() | |
| return text, lang | |
| def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt): | |
| global model, text_collater, text_tokenizer, audio_tokenizer | |
| audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt | |
| sr, wav_pr = audio_prompt | |
| wav_pr = torch.FloatTensor(wav_pr)/32768 | |
| if wav_pr.size(-1) == 2: | |
| wav_pr = wav_pr.mean(-1, keepdim=False) | |
| text_pr, lang_pr = make_prompt(str(random.randint(0, 10000000)), wav_pr, sr, save=False) | |
| lang_token = langdropdown2token[language] | |
| lang = token2lang[lang_token] | |
| text = lang_token + text + lang_token | |
| # onload model | |
| model.to(device) | |
| # tokenize audio | |
| encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr.unsqueeze(0), sr)) | |
| audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) | |
| # tokenize text | |
| logging.info(f"synthesize text: {text}") | |
| text_tokens, text_tokens_lens = text_collater( | |
| [ | |
| text_tokenizer.tokenize(text=f"{text_pr}{text}".strip()) | |
| ] | |
| ) | |
| enroll_x_lens = None | |
| if text_pr: | |
| _, enroll_x_lens = text_collater( | |
| [ | |
| text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
| ] | |
| ) | |
| lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
| encoded_frames = model.inference( | |
| text_tokens.to(device), | |
| text_tokens_lens.to(device), | |
| audio_prompts, | |
| enroll_x_lens=enroll_x_lens, | |
| top_k=-100, | |
| temperature=1, | |
| prompt_language=lang_pr, | |
| text_language=lang, | |
| ) | |
| samples = audio_tokenizer.decode( | |
| [(encoded_frames.transpose(2, 1), None)] | |
| ) | |
| # offload model | |
| model.to('cpu') | |
| torch.cuda.empty_cache() | |
| message = f"text prompt: {text_pr}\nsythesized text: {text}" | |
| return message, (24000, samples[0][0].cpu().numpy()) | |
| def infer_from_prompt(text, language, accent, prompt_file): | |
| # onload model | |
| model.to(device) | |
| clear_prompts() | |
| # text to synthesize | |
| lang_token = langdropdown2token[language] | |
| lang = token2lang[lang_token] | |
| text = lang_token + text + lang_token | |
| # load prompt | |
| prompt_data = np.load(prompt_file.name) | |
| audio_prompts = prompt_data['audio_tokens'] | |
| text_prompts = prompt_data['text_tokens'] | |
| lang_pr = prompt_data['lang_code'] | |
| lang_pr = code2lang[int(lang_pr)] | |
| # numpy to tensor | |
| audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
| text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
| enroll_x_lens = text_prompts.shape[-1] | |
| logging.info(f"synthesize text: {text}") | |
| text_tokens, text_tokens_lens = text_collater( | |
| [ | |
| text_tokenizer.tokenize(text=f"_{text}".strip()) | |
| ] | |
| ) | |
| text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
| text_tokens_lens += enroll_x_lens | |
| # accent control | |
| lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
| encoded_frames = model.inference( | |
| text_tokens.to(device), | |
| text_tokens_lens.to(device), | |
| audio_prompts, | |
| enroll_x_lens=enroll_x_lens, | |
| top_k=-100, | |
| temperature=1, | |
| prompt_language=lang_pr, | |
| text_language=lang, | |
| ) | |
| samples = audio_tokenizer.decode( | |
| [(encoded_frames.transpose(2, 1), None)] | |
| ) | |
| # offload model | |
| model.to('cpu') | |
| torch.cuda.empty_cache() | |
| message = f"sythesized text: {text}" | |
| return message, (24000, samples[0][0].cpu().numpy()) | |
| def main(): | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown(top_md) | |
| with gr.Tab("Infer from audio"): | |
| gr.Markdown(infer_from_audio_md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox = gr.TextArea(label="Text", | |
| placeholder="Type your sentence here", | |
| value="VALLEX can synthesize personalized speech in another language for a monolingual speaker.", elem_id=f"tts-input") | |
| language_dropdown = gr.Dropdown(choices=['English', '中文', '日本語'], value='English', label='language') | |
| accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') | |
| upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
| record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
| with gr.Column(): | |
| text_output = gr.Textbox(label="Message") | |
| audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
| btn = gr.Button("Generate!") | |
| btn.click(infer_from_audio, | |
| inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt], | |
| outputs=[text_output, audio_output]) | |
| textbox_mp = gr.TextArea(label="Prompt name", | |
| placeholder="Name your prompt here", | |
| value="prompt_1", elem_id=f"prompt-name") | |
| btn_mp = gr.Button("Make prompt!") | |
| prompt_output = gr.File(interactive=False) | |
| btn_mp.click(make_npz_prompt, | |
| inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt], | |
| outputs=[text_output, prompt_output]) | |
| with gr.Tab("Make prompt"): | |
| gr.Markdown(make_prompt_md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox2 = gr.TextArea(label="Prompt name", | |
| placeholder="Name your prompt here", | |
| value="prompt_1", elem_id=f"prompt-name") | |
| upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
| record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
| with gr.Column(): | |
| text_output_2 = gr.Textbox(label="Message") | |
| prompt_output_2 = gr.File(interactive=False) | |
| btn_2 = gr.Button("Make!") | |
| btn_2.click(make_npz_prompt, | |
| inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2], | |
| outputs=[text_output_2, prompt_output_2]) | |
| with gr.Tab("Infer from prompt"): | |
| gr.Markdown(infer_from_prompt_md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox_3 = gr.TextArea(label="Text", | |
| placeholder="Type your sentence here", | |
| value="VALLEX can synthesize personalized speech in another language for a monolingual speaker.", elem_id=f"tts-input") | |
| language_dropdown_3 = gr.Dropdown(choices=['English', '中文', '日本語'], value='English', | |
| label='language') | |
| accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
| label='accent') | |
| prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
| with gr.Column(): | |
| text_output_3 = gr.Textbox(label="Message") | |
| audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
| btn_3 = gr.Button("Generate!") | |
| btn_3.click(infer_from_prompt, | |
| inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, prompt_file], | |
| outputs=[text_output_3, audio_output_3]) | |
| app.launch() | |
| if __name__ == "__main__": | |
| formatter = ( | |
| "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
| ) | |
| logging.basicConfig(format=formatter, level=logging.INFO) | |
| main() |