import torch from torch import nn import math from modules.v2.dit_model import ModelArgs, Transformer from modules.commons import sequence_mask from torch.nn.utils import weight_norm def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000, scale=1000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = scale * t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class DiT(torch.nn.Module): def __init__( self, time_as_token, style_as_token, uvit_skip_connection, block_size, depth, num_heads, hidden_dim, in_channels, content_dim, style_encoder_dim, class_dropout_prob, dropout_rate, attn_dropout_rate, ): super(DiT, self).__init__() self.time_as_token = time_as_token self.style_as_token = style_as_token self.uvit_skip_connection = uvit_skip_connection model_args = ModelArgs( block_size=block_size, n_layer=depth, n_head=num_heads, dim=hidden_dim, head_dim=hidden_dim // num_heads, vocab_size=1, # we don't use this uvit_skip_connection=self.uvit_skip_connection, time_as_token=self.time_as_token, dropout_rate=dropout_rate, attn_dropout_rate=attn_dropout_rate, ) self.transformer = Transformer(model_args) self.in_channels = in_channels self.out_channels = in_channels self.num_heads = num_heads self.x_embedder = weight_norm(nn.Linear(in_channels, hidden_dim, bias=True)) self.content_dim = content_dim # for continuous content self.cond_projection = nn.Linear(content_dim, hidden_dim, bias=True) # continuous content self.t_embedder = TimestepEmbedder(hidden_dim) self.final_mlp = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.SiLU(), nn.Linear(hidden_dim, in_channels), ) self.class_dropout_prob = class_dropout_prob self.cond_x_merge_linear = nn.Linear(hidden_dim + in_channels + in_channels, hidden_dim) self.style_in = nn.Linear(style_encoder_dim, hidden_dim) def forward(self, x, prompt_x, x_lens, t, style, cond): class_dropout = False content_dropout = False if self.training and torch.rand(1) < self.class_dropout_prob: class_dropout = True if self.training and torch.rand(1) < 0.5: content_dropout = True cond_in_module = self.cond_projection B, _, T = x.size() t1 = self.t_embedder(t) # (N, D) cond = cond_in_module(cond) x = x.transpose(1, 2) prompt_x = prompt_x.transpose(1, 2) x_in = torch.cat([x, prompt_x, cond], dim=-1) if class_dropout: x_in[..., self.in_channels:self.in_channels*2] = 0 if content_dropout: x_in[..., self.in_channels*2:] = 0 x_in = self.cond_x_merge_linear(x_in) # (N, T, D) style = self.style_in(style) style = torch.zeros_like(style) if class_dropout else style if self.style_as_token: x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) if self.time_as_token: x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token, max_length=x_in.size(1)).to(x.device).unsqueeze(1) input_pos = torch.arange(x_in.size(1)).to(x.device) x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) x_res = x_res[:, 1:] if self.time_as_token else x_res x_res = x_res[:, 1:] if self.style_as_token else x_res x = self.final_mlp(x_res) x = x.transpose(1, 2) return x