import spaces import torch import torchaudio import librosa import numpy as np from pydub import AudioSegment import yaml from modules.commons import build_model, load_checkpoint, recursive_munch from hf_utils import load_custom_model_from_hf from modules.campplus.DTDNN import CAMPPlus from modules.bigvgan import bigvgan from modules.audio import mel_spectrogram from modules.rmvpe import RMVPE from transformers import AutoFeatureExtractor, WhisperModel class SeedVCWrapper: def __init__(self, device=None): """ Initialize the Seed-VC wrapper with all necessary models and configurations. Args: device: torch device to use. If None, will be automatically determined. """ # Set device if device is None: if torch.cuda.is_available(): self.device = torch.device("cuda") elif torch.backends.mps.is_available(): self.device = torch.device("mps") else: self.device = torch.device("cpu") else: self.device = device # Load base model and configuration self._load_base_model() # Load F0 conditioned model self._load_f0_model() # Load additional modules self._load_additional_modules() # Set streaming parameters self.overlap_frame_len = 16 self.bitrate = "320k" def _load_base_model(self): """Load the base DiT model for voice conversion.""" dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( "Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml" ) config = yaml.safe_load(open(dit_config_path, 'r')) model_params = recursive_munch(config['model_params']) self.model = build_model(model_params, stage='DiT') self.hop_length = config['preprocess_params']['spect_params']['hop_length'] self.sr = config['preprocess_params']['sr'] # Load checkpoints self.model, _, _, _ = load_checkpoint( self.model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False ) for key in self.model: self.model[key].eval() self.model[key].to(self.device) self.model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) # Set up mel spectrogram function mel_fn_args = { "n_fft": config['preprocess_params']['spect_params']['n_fft'], "win_size": config['preprocess_params']['spect_params']['win_length'], "hop_size": config['preprocess_params']['spect_params']['hop_length'], "num_mels": config['preprocess_params']['spect_params']['n_mels'], "sampling_rate": self.sr, "fmin": 0, "fmax": None, "center": False } self.to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) # Load whisper model whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small" self.whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(self.device) del self.whisper_model.decoder self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) def _load_f0_model(self): """Load the F0 conditioned model for voice conversion.""" dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( "Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml" ) config = yaml.safe_load(open(dit_config_path, 'r')) model_params = recursive_munch(config['model_params']) self.model_f0 = build_model(model_params, stage='DiT') self.hop_length_f0 = config['preprocess_params']['spect_params']['hop_length'] self.sr_f0 = config['preprocess_params']['sr'] # Load checkpoints self.model_f0, _, _, _ = load_checkpoint( self.model_f0, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False ) for key in self.model_f0: self.model_f0[key].eval() self.model_f0[key].to(self.device) self.model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) # Set up mel spectrogram function for F0 model mel_fn_args_f0 = { "n_fft": config['preprocess_params']['spect_params']['n_fft'], "win_size": config['preprocess_params']['spect_params']['win_length'], "hop_size": config['preprocess_params']['spect_params']['hop_length'], "num_mels": config['preprocess_params']['spect_params']['n_mels'], "sampling_rate": self.sr_f0, "fmin": 0, "fmax": None, "center": False } self.to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0) def _load_additional_modules(self): """Load additional modules like CAMPPlus, BigVGAN, and RMVPE.""" # Load CAMPPlus campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) self.campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) self.campplus_model.eval() self.campplus_model.to(self.device) # Load BigVGAN models self.bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False) self.bigvgan_model.remove_weight_norm() self.bigvgan_model = self.bigvgan_model.eval().to(self.device) self.bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False) self.bigvgan_44k_model.remove_weight_norm() self.bigvgan_44k_model = self.bigvgan_44k_model.eval().to(self.device) # Load RMVPE for F0 extraction model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) self.rmvpe = RMVPE(model_path, is_half=False, device=self.device) @staticmethod def adjust_f0_semitones(f0_sequence, n_semitones): """Adjust F0 values by a number of semitones.""" factor = 2 ** (n_semitones / 12) return f0_sequence * factor @staticmethod def crossfade(chunk1, chunk2, overlap): """Apply crossfade between two audio chunks.""" fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 if len(chunk2) < overlap: chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)] else: chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out return chunk2 def _stream_wave_chunks(self, vc_wave, processed_frames, vc_target, overlap_wave_len, generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr): """ Helper method to handle streaming wave chunks. Args: vc_wave: The current wave chunk processed_frames: Number of frames processed so far vc_target: The target mel spectrogram overlap_wave_len: Length of overlap between chunks generated_wave_chunks: List of generated wave chunks previous_chunk: Previous wave chunk for crossfading is_last_chunk: Whether this is the last chunk stream_output: Whether to stream the output sr: Sample rate Returns: Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio) where should_break indicates if processing should stop mp3_bytes is the MP3 bytes if streaming, None otherwise full_audio is the full audio if this is the last chunk, None otherwise """ mp3_bytes = None full_audio = None if processed_frames == 0: if is_last_chunk: output_wave = vc_wave[0].cpu().numpy() generated_wave_chunks.append(output_wave) if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() full_audio = (sr, np.concatenate(generated_wave_chunks)) else: return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) return processed_frames, previous_chunk, True, mp3_bytes, full_audio output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_target.size(2) - self.overlap_frame_len if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() elif is_last_chunk: output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) processed_frames += vc_target.size(2) - self.overlap_frame_len if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() full_audio = (sr, np.concatenate(generated_wave_chunks)) else: return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) return processed_frames, previous_chunk, True, mp3_bytes, full_audio else: output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_target.size(2) - self.overlap_frame_len if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() return processed_frames, previous_chunk, False, mp3_bytes, full_audio def _process_whisper_features(self, audio_16k, is_source=True): """Process audio through Whisper model to extract features.""" if audio_16k.size(-1) <= 16000 * 30: # If audio is short enough, process in one go inputs = self.whisper_feature_extractor( [audio_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=16000 ) input_features = self.whisper_model._mask_input_features( inputs.input_features, attention_mask=inputs.attention_mask ).to(self.device) outputs = self.whisper_model.encoder( input_features.to(self.whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) features = outputs.last_hidden_state.to(torch.float32) features = features[:, :audio_16k.size(-1) // 320 + 1] else: # Process long audio in chunks overlapping_time = 5 # 5 seconds features_list = [] buffer = None traversed_time = 0 while traversed_time < audio_16k.size(-1): if buffer is None: # first chunk chunk = audio_16k[:, traversed_time:traversed_time + 16000 * 30] else: chunk = torch.cat([ buffer, audio_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)] ], dim=-1) inputs = self.whisper_feature_extractor( [chunk.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=16000 ) input_features = self.whisper_model._mask_input_features( inputs.input_features, attention_mask=inputs.attention_mask ).to(self.device) outputs = self.whisper_model.encoder( input_features.to(self.whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) chunk_features = outputs.last_hidden_state.to(torch.float32) chunk_features = chunk_features[:, :chunk.size(-1) // 320 + 1] if traversed_time == 0: features_list.append(chunk_features) else: features_list.append(chunk_features[:, 50 * overlapping_time:]) buffer = chunk[:, -16000 * overlapping_time:] traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time features = torch.cat(features_list, dim=1) return features @spaces.GPU @torch.no_grad() @torch.inference_mode() def convert_voice(self, source, target, diffusion_steps=10, length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False, auto_f0_adjust=True, pitch_shift=0, stream_output=True): """ Convert both timbre and voice from source to target. Args: source: Path to source audio file target: Path to target audio file diffusion_steps: Number of diffusion steps (default: 10) length_adjust: Length adjustment factor (default: 1.0) inference_cfg_rate: Inference CFG rate (default: 0.7) f0_condition: Whether to use F0 conditioning (default: False) auto_f0_adjust: Whether to automatically adjust F0 (default: True) pitch_shift: Pitch shift in semitones (default: 0) stream_output: Whether to stream the output (default: True) Returns: If stream_output is True, yields (mp3_bytes, full_audio) tuples If stream_output is False, returns the full audio as a numpy array """ # Select appropriate models based on F0 condition inference_module = self.model if not f0_condition else self.model_f0 mel_fn = self.to_mel if not f0_condition else self.to_mel_f0 bigvgan_fn = self.bigvgan_model if not f0_condition else self.bigvgan_44k_model sr = 22050 if not f0_condition else 44100 hop_length = 256 if not f0_condition else 512 max_context_window = sr // hop_length * 30 overlap_wave_len = self.overlap_frame_len * hop_length # Load audio source_audio = librosa.load(source, sr=sr)[0] ref_audio = librosa.load(target, sr=sr)[0] # Process audio source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device) ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(self.device) # Resample to 16kHz for feature extraction ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) # Extract Whisper features S_alt = self._process_whisper_features(converted_waves_16k, is_source=True) S_ori = self._process_whisper_features(ref_waves_16k, is_source=False) # Compute mel spectrograms mel = mel_fn(source_audio.to(self.device).float()) mel2 = mel_fn(ref_audio.to(self.device).float()) # Set target lengths target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) # Compute style features feat2 = torchaudio.compliance.kaldi.fbank( ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000 ) feat2 = feat2 - feat2.mean(dim=0, keepdim=True) style2 = self.campplus_model(feat2.unsqueeze(0)) # Process F0 if needed if f0_condition: F0_ori = self.rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03) F0_alt = self.rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03) if self.device == "mps": F0_ori = torch.from_numpy(F0_ori).float().to(self.device)[None] F0_alt = torch.from_numpy(F0_alt).float().to(self.device)[None] else: F0_ori = torch.from_numpy(F0_ori).to(self.device)[None] F0_alt = torch.from_numpy(F0_alt).to(self.device)[None] voiced_F0_ori = F0_ori[F0_ori > 1] voiced_F0_alt = F0_alt[F0_alt > 1] log_f0_alt = torch.log(F0_alt + 1e-5) voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) median_log_f0_ori = torch.median(voiced_log_f0_ori) median_log_f0_alt = torch.median(voiced_log_f0_alt) # Shift alt log f0 level to ori log f0 level shifted_log_f0_alt = log_f0_alt.clone() if auto_f0_adjust: shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori shifted_f0_alt = torch.exp(shifted_log_f0_alt) if pitch_shift != 0: shifted_f0_alt[F0_alt > 1] = self.adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) else: F0_ori = None F0_alt = None shifted_f0_alt = None # Length regulation cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt ) prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori ) # Process in chunks for streaming max_source_window = max_context_window - mel2.size(2) processed_frames = 0 generated_wave_chunks = [] previous_chunk = None # Generate chunk by chunk and stream the output while processed_frames < cond.size(1): chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] is_last_chunk = processed_frames + max_source_window >= cond.size(1) cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) with torch.autocast(device_type=self.device.type, dtype=torch.float16): # Voice Conversion vc_target = inference_module.cfm.inference( cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate ) vc_target = vc_target[:, :, mel2.size(-1):] vc_wave = bigvgan_fn(vc_target.float())[0] processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( vc_wave, processed_frames, vc_target, overlap_wave_len, generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr ) if stream_output and mp3_bytes is not None: yield mp3_bytes, full_audio if should_break: if not stream_output: return full_audio break if not stream_output: return np.concatenate(generated_wave_chunks) return None, None