import spaces import torch import librosa import torchaudio import numpy as np from pydub import AudioSegment from hf_utils import load_custom_model_from_hf DEFAULT_REPO_ID = "Plachta/Seed-VC" DEFAULT_CFM_CHECKPOINT = "v2/cfm_small.pth" DEFAULT_AR_CHECKPOINT = "v2/ar_base.pth" DEFAULT_CE_REPO_ID = "Plachta/ASTRAL-quantization" DEFAULT_CE_NARROW_CHECKPOINT = "bsq32/bsq32_light.pth" DEFAULT_CE_WIDE_CHECKPOINT = "bsq2048/bsq2048_light.pth" DEFAULT_SE_REPO_ID = "funasr/campplus" DEFAULT_SE_CHECKPOINT = "campplus_cn_common.bin" class VoiceConversionWrapper(torch.nn.Module): def __init__( self, sr: int, hop_size: int, mel_fn: callable, cfm: torch.nn.Module, cfm_length_regulator: torch.nn.Module, content_extractor_narrow: torch.nn.Module, content_extractor_wide: torch.nn.Module, ar_length_regulator: torch.nn.Module, ar: torch.nn.Module, style_encoder: torch.nn.Module, vocoder: torch.nn.Module, ): super(VoiceConversionWrapper, self).__init__() self.sr = sr self.hop_size = hop_size self.mel_fn = mel_fn self.cfm = cfm self.cfm_length_regulator = cfm_length_regulator self.content_extractor_narrow = content_extractor_narrow self.content_extractor_wide = content_extractor_wide self.vocoder = vocoder self.ar_length_regulator = ar_length_regulator self.ar = ar self.style_encoder = style_encoder # Set streaming parameters self.overlap_frame_len = 16 self.bitrate = "320k" self.compiled_decode_fn = None self.dit_compiled = False self.dit_max_context_len = 30 # in seconds self.ar_max_content_len = 1500 # in num of narrow tokens self.compile_len = 87 * self.dit_max_context_len def compile_ar(self): """ Compile the AR model for inference. """ self.compiled_decode_fn = torch.compile( self.ar.model.forward_generate, fullgraph=True, backend="inductor" if torch.cuda.is_available() else "aot_eager", mode="reduce-overhead" if torch.cuda.is_available() else None, ) def compile_cfm(self): self.cfm.estimator.transformer = torch.compile( self.cfm.estimator.transformer, fullgraph=True, backend="inductor" if torch.cuda.is_available() else "aot_eager", mode="reduce-overhead" if torch.cuda.is_available() else None, ) self.dit_compiled = True @staticmethod def strip_prefix(state_dict: dict, prefix: str = "module.") -> dict: """ Strip the prefix from the state_dict keys. """ new_state_dict = {} for k, v in state_dict.items(): if k.startswith(prefix): new_key = k[len(prefix):] else: new_key = k new_state_dict[new_key] = v return new_state_dict @staticmethod def duration_reduction_func(token_seq, n_gram=1): """ Args: token_seq: (T,) Returns: reduced_token_seq: (T') reduced_token_seq_len: T' """ n_gram_seq = token_seq.unfold(0, n_gram, 1) mask = torch.all(n_gram_seq[1:] != n_gram_seq[:-1], dim=1) reduced_token_seq = torch.cat( (n_gram_seq[0, :n_gram], n_gram_seq[1:, -1][mask]) ) return reduced_token_seq, len(reduced_token_seq) @staticmethod def crossfade(chunk1, chunk2, overlap): """Apply crossfade between two audio chunks.""" fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 if len(chunk2) < overlap: chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)] else: chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out return chunk2 def _stream_wave_chunks(self, vc_wave, processed_frames, vc_mel, overlap_wave_len, generated_wave_chunks, previous_chunk, is_last_chunk, stream_output): """ Helper method to handle streaming wave chunks. Args: vc_wave: The current wave chunk processed_frames: Number of frames processed so far vc_mel: The mel spectrogram overlap_wave_len: Length of overlap between chunks generated_wave_chunks: List of generated wave chunks previous_chunk: Previous wave chunk for crossfading is_last_chunk: Whether this is the last chunk stream_output: Whether to stream the output Returns: Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio) where should_break indicates if processing should stop mp3_bytes is the MP3 bytes if streaming, None otherwise full_audio is the full audio if this is the last chunk, None otherwise """ mp3_bytes = None full_audio = None if processed_frames == 0: if is_last_chunk: output_wave = vc_wave[0].cpu().numpy() generated_wave_chunks.append(output_wave) if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=self.sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() full_audio = (self.sr, np.concatenate(generated_wave_chunks)) else: return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) return processed_frames, previous_chunk, True, mp3_bytes, full_audio output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_mel.size(2) - self.overlap_frame_len if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=self.sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() elif is_last_chunk: output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) processed_frames += vc_mel.size(2) - self.overlap_frame_len if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=self.sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() full_audio = (self.sr, np.concatenate(generated_wave_chunks)) else: return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) return processed_frames, previous_chunk, True, mp3_bytes, full_audio else: output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_mel.size(2) - self.overlap_frame_len if stream_output: output_wave_int16 = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave_int16.tobytes(), frame_rate=self.sr, sample_width=output_wave_int16.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=self.bitrate).read() return processed_frames, previous_chunk, False, mp3_bytes, full_audio def load_checkpoints( self, cfm_checkpoint_path = None, ar_checkpoint_path = None, ): if cfm_checkpoint_path is None: cfm_checkpoint_path = load_custom_model_from_hf( repo_id=DEFAULT_REPO_ID, model_filename=DEFAULT_CFM_CHECKPOINT, ) if ar_checkpoint_path is None: ar_checkpoint_path = load_custom_model_from_hf( repo_id=DEFAULT_REPO_ID, model_filename=DEFAULT_AR_CHECKPOINT, ) # cfm cfm_checkpoint = torch.load(cfm_checkpoint_path, map_location="cpu") cfm_length_regulator_state_dict = self.strip_prefix(cfm_checkpoint["net"]['length_regulator'], "module.") cfm_state_dict = self.strip_prefix(cfm_checkpoint["net"]['cfm'], "module.") self.cfm.load_state_dict(cfm_state_dict, strict=False) self.cfm_length_regulator.load_state_dict(cfm_length_regulator_state_dict, strict=False) # ar ar_checkpoint = torch.load(ar_checkpoint_path, map_location="cpu") ar_length_regulator_state_dict = self.strip_prefix(ar_checkpoint["net"]['length_regulator'], "module.") ar_state_dict = self.strip_prefix(ar_checkpoint["net"]['ar'], "module.") self.ar.load_state_dict(ar_state_dict, strict=False) self.ar_length_regulator.load_state_dict(ar_length_regulator_state_dict, strict=False) # content extractor content_extractor_narrow_checkpoint_path = load_custom_model_from_hf( repo_id=DEFAULT_CE_REPO_ID, model_filename=DEFAULT_CE_NARROW_CHECKPOINT, ) content_extractor_narrow_checkpoint = torch.load(content_extractor_narrow_checkpoint_path, map_location="cpu") self.content_extractor_narrow.load_state_dict( content_extractor_narrow_checkpoint, strict=False ) content_extractor_wide_checkpoint_path = load_custom_model_from_hf( repo_id=DEFAULT_CE_REPO_ID, model_filename=DEFAULT_CE_WIDE_CHECKPOINT, ) content_extractor_wide_checkpoint = torch.load(content_extractor_wide_checkpoint_path, map_location="cpu") self.content_extractor_wide.load_state_dict( content_extractor_wide_checkpoint, strict=False ) # style encoder style_encoder_checkpoint_path = load_custom_model_from_hf(DEFAULT_SE_REPO_ID, DEFAULT_SE_CHECKPOINT, config_filename=None) style_encoder_checkpoint = torch.load(style_encoder_checkpoint_path, map_location="cpu") self.style_encoder.load_state_dict(style_encoder_checkpoint, strict=False) def setup_ar_caches(self, max_batch_size=1, max_seq_len=4096, dtype=torch.float32, device=torch.device("cpu")): self.ar.setup_caches(max_batch_size=max_batch_size, max_seq_len=max_seq_len, dtype=dtype, device=device) def compute_style(self, waves_16k: torch.Tensor): feat = torchaudio.compliance.kaldi.fbank(waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000) feat = feat - feat.mean(dim=0, keepdim=True) style = self.style_encoder(feat.unsqueeze(0)) return style @torch.no_grad() @torch.inference_mode() def convert_timbre( self, source_audio_path: str, target_audio_path: str, diffusion_steps: int = 30, length_adjust: float = 1.0, inference_cfg_rate: float = 0.5, use_sway_sampling: bool = False, use_amo_sampling: bool = False, device: torch.device = torch.device("cpu"), dtype: torch.dtype = torch.float32, ): source_wave = librosa.load(source_audio_path, sr=self.sr)[0] target_wave = librosa.load(target_audio_path, sr=self.sr)[0] source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device) target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device) # get 16khz audio source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000) target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000) source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device) target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device) # compute mel spectrogram source_mel = self.mel_fn(source_wave_tensor) target_mel = self.mel_fn(target_wave_tensor) source_mel_len = source_mel.size(2) target_mel_len = target_mel.size(2) with torch.autocast(device_type=device.type, dtype=dtype): # compute content features _, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size]) _, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size]) # compute style features target_style = self.compute_style(target_wave_16k_tensor) # Length regulation cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device)) prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device)) cat_condition = torch.cat([prompt_condition, cond], dim=1) # generate mel spectrogram vc_mel = self.cfm.inference( cat_condition, torch.LongTensor([cat_condition.size(1)]).to(device), target_mel, target_style, diffusion_steps, inference_cfg_rate=inference_cfg_rate, sway_sampling=use_sway_sampling, amo_sampling=use_amo_sampling, ) vc_mel = vc_mel[:, :, target_mel_len:] vc_wave = self.vocoder(vc_mel.float()).squeeze()[None] return vc_wave.cpu().numpy() @torch.no_grad() @torch.inference_mode() def convert_voice( self, source_audio_path: str, target_audio_path: str, diffusion_steps: int = 30, length_adjust: float = 1.0, inference_cfg_rate: float = 0.5, top_p: float = 0.7, temperature: float = 0.7, repetition_penalty: float = 1.5, use_sway_sampling: bool = False, use_amo_sampling: bool = False, device: torch.device = torch.device("cpu"), dtype: torch.dtype = torch.float32, ): source_wave = librosa.load(source_audio_path, sr=self.sr)[0] target_wave = librosa.load(target_audio_path, sr=self.sr)[0] source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device) target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device) # get 16khz audio source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000) target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000) source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device) target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device) # compute mel spectrogram source_mel = self.mel_fn(source_wave_tensor) target_mel = self.mel_fn(target_wave_tensor) source_mel_len = source_mel.size(2) target_mel_len = target_mel.size(2) with torch.autocast(device_type=device.type, dtype=dtype): # compute content features _, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size]) _, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size]) _, source_narrow_indices, _ = self.content_extractor_narrow(source_wave_16k_tensor, [source_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model) _, target_narrow_indices, _ = self.content_extractor_narrow(target_wave_16k_tensor, [target_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model) src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1) tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1) ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, src_narrow_reduced], dim=0)[None])[0] ar_out = self.ar.generate(ar_cond, target_content_indices, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty) ar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(-1) * ar_out.size(-1) * length_adjust)]).to(device) # compute style features target_style = self.compute_style(target_wave_16k_tensor) # Length regulation cond, _ = self.cfm_length_regulator(ar_out, ylens=torch.LongTensor([ar_out_mel_len]).to(device)) prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device)) cat_condition = torch.cat([prompt_condition, cond], dim=1) # generate mel spectrogram vc_mel = self.cfm.inference( cat_condition, torch.LongTensor([cat_condition.size(1)]).to(device), target_mel, target_style, diffusion_steps, inference_cfg_rate=inference_cfg_rate, sway_sampling=use_sway_sampling, amo_sampling=use_amo_sampling, ) vc_mel = vc_mel[:, :, target_mel_len:] vc_wave = self.vocoder(vc_mel.float()).squeeze()[None] return vc_wave.cpu().numpy() def _process_content_features(self, audio_16k_tensor, is_narrow=False): """Process audio through Whisper model to extract features.""" content_extractor_fn = self.content_extractor_narrow if is_narrow else self.content_extractor_wide if audio_16k_tensor.size(-1) <= 16000 * 30: # Compute content features _, content_indices, _ = content_extractor_fn(audio_16k_tensor, [audio_16k_tensor.size(-1)], ssl_model=self.content_extractor_wide.ssl_model) else: # Process long audio in chunks overlapping_time = 5 # 5 seconds features_list = [] buffer = None traversed_time = 0 while traversed_time < audio_16k_tensor.size(-1): if buffer is None: # first chunk chunk = audio_16k_tensor[:, traversed_time:traversed_time + 16000 * 30] else: chunk = torch.cat([ buffer, audio_16k_tensor[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)] ], dim=-1) _, chunk_content_indices, _ = content_extractor_fn(chunk, [chunk.size(-1)], ssl_model=self.content_extractor_wide.ssl_model) if traversed_time == 0: features_list.append(chunk_content_indices) else: features_list.append(chunk_content_indices[:, 50 * overlapping_time:]) buffer = chunk[:, -16000 * overlapping_time:] traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time content_indices = torch.cat(features_list, dim=1) return content_indices @spaces.GPU @torch.no_grad() @torch.inference_mode() def convert_voice_with_streaming( self, source_audio_path: str, target_audio_path: str, diffusion_steps: int = 30, length_adjust: float = 1.0, intelligebility_cfg_rate: float = 0.7, similarity_cfg_rate: float = 0.7, top_p: float = 0.7, temperature: float = 0.7, repetition_penalty: float = 1.5, convert_style: bool = False, anonymization_only: bool = False, device: torch.device = torch.device("cuda"), dtype: torch.dtype = torch.float16, stream_output: bool = True, ): """ Convert voice with streaming support for long audio files. Args: source_audio_path: Path to source audio file target_audio_path: Path to target audio file diffusion_steps: Number of diffusion steps (default: 30) length_adjust: Length adjustment factor (default: 1.0) intelligebility_cfg_rate: CFG rate for intelligibility (default: 0.7) similarity_cfg_rate: CFG rate for similarity (default: 0.7) top_p: Top-p sampling parameter (default: 0.7) temperature: Temperature for sampling (default: 0.7) repetition_penalty: Repetition penalty (default: 1.5) device: Device to use (default: cpu) dtype: Data type to use (default: float32) stream_output: Whether to stream the output (default: True) Returns: If stream_output is True, yields (mp3_bytes, full_audio) tuples If stream_output is False, returns the full audio as a numpy array """ # Load audio source_wave = librosa.load(source_audio_path, sr=self.sr)[0] target_wave = librosa.load(target_audio_path, sr=self.sr)[0] # Limit target audio to 25 seconds target_wave = target_wave[:self.sr * (self.dit_max_context_len - 5)] source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).float().to(device) target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).float().to(device) # Resample to 16kHz for feature extraction source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000) target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000) source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device) target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device) # Compute mel spectrograms source_mel = self.mel_fn(source_wave_tensor) target_mel = self.mel_fn(target_wave_tensor) source_mel_len = source_mel.size(2) target_mel_len = target_mel.size(2) # Set up chunk processing parameters max_context_window = self.sr // self.hop_size * self.dit_max_context_len overlap_wave_len = self.overlap_frame_len * self.hop_size with torch.autocast(device_type=device.type, dtype=dtype): # Compute content features source_content_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=False) target_content_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=False) # Compute style features target_style = self.compute_style(target_wave_16k_tensor) prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device)) # prepare for streaming generated_wave_chunks = [] processed_frames = 0 previous_chunk = None if convert_style: with torch.autocast(device_type=device.type, dtype=dtype): source_narrow_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=True) target_narrow_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=True) src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1) tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1) # Process src_narrow_reduced in chunks of max 1000 tokens max_chunk_size = self.ar_max_content_len - tgt_narrow_len # Process src_narrow_reduced in chunks for i in range(0, len(src_narrow_reduced), max_chunk_size): is_last_chunk = i + max_chunk_size >= len(src_narrow_reduced) with torch.autocast(device_type=device.type, dtype=dtype): chunk = src_narrow_reduced[i:i + max_chunk_size] if anonymization_only: chunk_ar_cond = self.ar_length_regulator(chunk[None])[0] chunk_ar_out = self.ar.generate(chunk_ar_cond, torch.zeros([1, 0]).long().to(device), compiled_decode_fn=self.compiled_decode_fn, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty) else: # For each chunk, we need to include tgt_narrow_reduced as context chunk_ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, chunk], dim=0)[None])[0] chunk_ar_out = self.ar.generate(chunk_ar_cond, target_content_indices, compiled_decode_fn=self.compiled_decode_fn, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty) chunkar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size( -1) * chunk_ar_out.size(-1) * length_adjust)]).to(device) # Length regulation chunk_cond, _ = self.cfm_length_regulator(chunk_ar_out, ylens=torch.LongTensor([chunkar_out_mel_len]).to(device)) cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) original_len = cat_condition.size(1) # pad cat_condition to compile_len if self.dit_compiled: cat_condition = torch.nn.functional.pad(cat_condition, (0, 0, 0, self.compile_len - cat_condition.size(1),), value=0) # Voice Conversion vc_mel = self.cfm.inference( cat_condition, torch.LongTensor([original_len]).to(device), target_mel, target_style, diffusion_steps, inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate], random_voice=anonymization_only, ) vc_mel = vc_mel[:, :, target_mel_len:original_len] vc_wave = self.vocoder(vc_mel).squeeze()[None] processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( vc_wave, processed_frames, vc_mel, overlap_wave_len, generated_wave_chunks, previous_chunk, is_last_chunk, stream_output ) if stream_output and mp3_bytes is not None: yield mp3_bytes, full_audio if should_break: if not stream_output: return full_audio break else: cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device)) # Process in chunks for streaming max_source_window = max_context_window - target_mel.size(2) # Generate chunk by chunk and stream the output while processed_frames < cond.size(1): chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] is_last_chunk = processed_frames + max_source_window >= cond.size(1) cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) original_len = cat_condition.size(1) # pad cat_condition to compile_len if self.dit_compiled: cat_condition = torch.nn.functional.pad(cat_condition, (0, 0, 0, self.compile_len - cat_condition.size(1),), value=0) with torch.autocast(device_type=device.type, dtype=dtype): # Voice Conversion vc_mel = self.cfm.inference( cat_condition, torch.LongTensor([original_len]).to(device), target_mel, target_style, diffusion_steps, inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate], random_voice=anonymization_only, ) vc_mel = vc_mel[:, :, target_mel_len:original_len] vc_wave = self.vocoder(vc_mel).squeeze()[None] processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( vc_wave, processed_frames, vc_mel, overlap_wave_len, generated_wave_chunks, previous_chunk, is_last_chunk, stream_output ) if stream_output and mp3_bytes is not None: yield mp3_bytes, full_audio if should_break: if not stream_output: return full_audio break