""" Lookup Free Quantization Proposed in https://arxiv.org/abs/2310.05737 In the simplest setup, each dimension is quantized into {-1, 1}. An entropy penalty is used to encourage utilization. """ from math import log2, ceil from functools import partial, cache from collections import namedtuple from contextlib import nullcontext import torch.distributed as dist from torch.distributed import nn as dist_nn import torch from torch import nn, einsum import torch.nn.functional as F from torch.nn import Module from torch.amp import autocast from einops import rearrange, reduce, pack, unpack # constants Return = namedtuple('Return', ['quantized', 'indices', 'entropy_aux_loss']) LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'batch_entropy', 'commitment']) # distributed helpers @cache def is_distributed(): return dist.is_initialized() and dist.get_world_size() > 1 def maybe_distributed_mean(t): if not is_distributed(): return t dist_nn.all_reduce(t) t = t / dist.get_world_size() return t # helper functions def exists(v): return v is not None def identity(t): return t def default(*args): for arg in args: if exists(arg): return arg() if callable(arg) else arg return None def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def l2norm(t): return F.normalize(t, dim = -1) # entropy def log(t, eps = 1e-5): return t.clamp(min = eps).log() def entropy(prob): return (-prob * log(prob)).sum(dim=-1) # cosine sim linear class CosineSimLinear(Module): def __init__( self, dim_in, dim_out, scale = 1. ): super().__init__() self.scale = scale self.weight = nn.Parameter(torch.randn(dim_in, dim_out)) def forward(self, x): x = F.normalize(x, dim = -1) w = F.normalize(self.weight, dim = 0) return (x @ w) * self.scale def soft_entropy_loss(u, tau=1.0, gamma=1.0): """ Compute the soft entropy loss for Binary Spherical Quantization (BSQ). Args: u (torch.Tensor): Input latent embeddings of shape (batch_size, L). tau (float): Temperature scaling factor. gamma (float): Weight for the second entropy term. Returns: torch.Tensor: Soft entropy loss. """ # Binary quantization: Generate implicit codebook corners L = u.size(1) # Dimensionality of codebook corners = torch.tensor([-1.0, 1.0], device=u.device) / (L**0.5) # Compute soft quantization probabilities for all dimensions # q_hat(c|u) for each dimension prob_matrix = torch.sigmoid(2 * tau * corners.unsqueeze(1) * u.unsqueeze(2)) # Shape: (batch_size, L, 2) # Entropy of q_hat(c|u) (independent along each dimension) entropy_per_dim = -torch.sum(prob_matrix * prob_matrix.log(), dim=-1) # Shape: (batch_size, L) entropy_term1 = entropy_per_dim.mean() # Expected probabilities for dataset entropy (approximation) expected_probs = prob_matrix.mean(dim=0) # Mean across batch, shape: (L, 2) entropy_term2 = -torch.sum(expected_probs * expected_probs.log(), dim=-1).mean() # Final entropy loss loss = entropy_term1 - gamma * entropy_term2 return loss # class class BinarySphericalQuantize(Module): def __init__( self, *, dim = None, codebook_size = None, entropy_loss_weight = 0.1, commitment_loss_weight = 0., diversity_gamma = 1., straight_through_activation = nn.Identity(), num_codebooks = 1, keep_num_codebooks_dim = None, codebook_scale = 1., # for residual LFQ, codebook scaled down by 2x at each layer frac_per_sample_entropy = 0.25, # make less than 1. to only use a random fraction of the probs for per sample entropy has_projections = None, projection_has_bias = True, soft_clamp_input_value = None, cosine_sim_project_in = False, cosine_sim_project_in_scale = None, channel_first = None, experimental_softplus_entropy_loss = False, entropy_loss_offset = 5., # how much to shift the loss before softplus spherical = True, # from https://arxiv.org/abs/2406.07548 force_quantization_f32 = True, # will force the quantization step to be full precision enable_entropy_loss = True, soft_entropy_loss = True, ): super().__init__() # some assert validations assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ' assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})' codebook_size = default(codebook_size, lambda: 2 ** dim) self.codebook_size = codebook_size codebook_dim = int(log2(codebook_size)) codebook_dims = codebook_dim * num_codebooks dim = default(dim, codebook_dims) has_projections = default(has_projections, dim != codebook_dims) if cosine_sim_project_in: cosine_sim_project_in = default(cosine_sim_project_in_scale, codebook_scale) project_in_klass = partial(CosineSimLinear, scale = cosine_sim_project_in) else: project_in_klass = partial(nn.Linear, bias = projection_has_bias) self.project_in = project_in_klass(dim, codebook_dims) if has_projections else nn.Identity() self.project_out = nn.Linear(codebook_dims, dim, bias = projection_has_bias) if has_projections else nn.Identity() self.has_projections = has_projections self.dim = dim self.codebook_dim = codebook_dim self.num_codebooks = num_codebooks keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) assert not (num_codebooks > 1 and not keep_num_codebooks_dim) self.keep_num_codebooks_dim = keep_num_codebooks_dim # channel first self.channel_first = channel_first # straight through activation self.activation = straight_through_activation # whether to use BSQ (binary spherical quantization) self.spherical = spherical self.maybe_l2norm = (lambda t: l2norm(t) * self.codebook_scale) if spherical else identity # entropy aux loss related weights assert 0 < frac_per_sample_entropy <= 1. self.frac_per_sample_entropy = frac_per_sample_entropy self.diversity_gamma = diversity_gamma self.entropy_loss_weight = entropy_loss_weight # codebook scale self.codebook_scale = codebook_scale # commitment loss self.commitment_loss_weight = commitment_loss_weight # whether to soft clamp the input value from -value to value self.soft_clamp_input_value = soft_clamp_input_value assert not exists(soft_clamp_input_value) or soft_clamp_input_value >= codebook_scale # whether to make the entropy loss positive through a softplus (experimental, please report if this worked or not in discussions) self.entropy_loss_offset = entropy_loss_offset self.experimental_softplus_entropy_loss = experimental_softplus_entropy_loss # for no auxiliary loss, during inference self.register_buffer('mask', 2 ** torch.arange(codebook_dim - 1, -1, -1)) self.register_buffer('zero', torch.tensor(0.), persistent = False) # whether to force quantization step to be f32 self.force_quantization_f32 = force_quantization_f32 # codes self.enable_entropy_loss = enable_entropy_loss self.soft_entropy_loss = soft_entropy_loss if codebook_size <= 100000: all_codes = torch.arange(codebook_size) bits = ((all_codes[..., None].int() & self.mask) != 0).float() codebook = self.bits_to_codes(bits) self.register_buffer('codebook', codebook.float(), persistent = False) else: all_codes = torch.arange(pow(2, 16)) mask = 2 ** torch.arange(16 - 1, -1, -1) bits = ((all_codes[..., None].int() & mask) != 0).float() codebook = self.bits_to_codes(bits) self.register_buffer('codebook', codebook.float(), persistent = False) def bits_to_codes(self, bits): return bits * self.codebook_scale * 2 - self.codebook_scale @property def dtype(self): return self.codebook.dtype def indices_to_codes( self, indices, project_out = True ): is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) should_transpose = default(self.channel_first, is_img_or_video) if not self.keep_num_codebooks_dim: indices = rearrange(indices, '... -> ... 1') # indices to codes, which are bits of either -1 or 1 bits = ((indices[..., None].int() & self.mask) != 0).to(self.dtype) codes = self.bits_to_codes(bits) codes = self.maybe_l2norm(codes) codes = rearrange(codes, '... c d -> ... (c d)') # whether to project codes out to original dimensions # if the input feature dimensions were not log2(codebook size) if project_out: codes = self.project_out(codes) # rearrange codes back to original shape if should_transpose: codes = rearrange(codes, 'b ... d -> b d ...') return codes def bits_to_z(self, bits): # assert bits must contain only -1 and 1 assert torch.all(bits.abs() == 1) quantized = bits.float() quantized = self.maybe_l2norm(quantized) z = self.project_out(quantized) return z def forward( self, x, inv_temperature = 100., return_loss_breakdown = False, mask = None, return_bits = False ): """ einstein notation b - batch n - sequence (or flattened spatial dimensions) d - feature dimension, which is also log2(codebook size) c - number of codebook dim """ is_img_or_video = x.ndim >= 4 should_transpose = default(self.channel_first, is_img_or_video) # standardize image or video into (batch, seq, dimension) if should_transpose: x = rearrange(x, 'b d ... -> b ... d') x, ps = pack_one(x, 'b * d') assert x.shape[-1] == self.dim, f'expected dimension of {self.dim} but received {x.shape[-1]}' x = self.project_in(x) # maybe soft clamp if exists(self.soft_clamp_input_value): clamp_value = self.soft_clamp_input_value x = (x / clamp_value).tanh() * clamp_value # split out number of codebooks x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks) # maybe l2norm x = self.maybe_l2norm(x) # whether to force quantization step to be full precision or not force_f32 = self.force_quantization_f32 quantization_context = partial(autocast, 'cuda', enabled = False) if force_f32 else nullcontext with quantization_context(): if force_f32: orig_dtype = x.dtype x = x.float() # quantize by eq 3. original_input = x codebook_value = torch.ones_like(x) * self.codebook_scale quantized = torch.where(x > 0, codebook_value, -codebook_value) if return_bits: return quantized # calculate indices indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum') # maybe l2norm quantized = self.maybe_l2norm(quantized) # use straight-through gradients (optionally with custom activation fn) if training if self.training: x = self.activation(x) x = x + (quantized - x).detach() else: x = quantized # entropy aux loss if self.soft_entropy_loss: entropy_aux_loss = soft_entropy_loss(x, tau=1.0, gamma=1.0) elif self.training and self.enable_entropy_loss: if force_f32: codebook = self.codebook.float() codebook = self.maybe_l2norm(codebook) # whether to only use a fraction of probs, for reducing memory if self.frac_per_sample_entropy < 1.: # account for mask if exists(mask): original_input = original_input[mask] original_input = rearrange(original_input, 'b n ... -> (b n) ...') rand_mask = torch.randn(self.codebook_dim).argsort(dim = -1) < 16 sampled_input = original_input[..., rand_mask] sampled_distance = -2 * einsum('... i d, j d -> ... i j', sampled_input, codebook) sampled_prob = (-sampled_distance * inv_temperature).softmax(dim = -1) per_sample_probs = sampled_prob else: if exists(mask): original_input = original_input[mask] original_input = rearrange(original_input, 'b n ... -> (b n) ...') # the same as euclidean distance up to a constant distance = -2 * einsum('... i d, j d -> ... i j', original_input, codebook) prob = (-distance * inv_temperature).softmax(dim = -1) per_sample_probs = prob # calculate per sample entropy per_sample_entropy = entropy(per_sample_probs).mean() # distribution over all available tokens in the batch avg_prob = reduce(per_sample_probs, '... c d -> c d', 'mean') avg_prob = maybe_distributed_mean(avg_prob) codebook_entropy = entropy(avg_prob).mean() # 1. entropy will be nudged to be low for each code, to encourage the network to output confident predictions # 2. codebook entropy will be nudged to be high, to encourage all codes to be uniformly used within the batch entropy_aux_loss = per_sample_entropy - self.diversity_gamma * codebook_entropy else: # if not training, just return dummy 0 entropy_aux_loss = per_sample_entropy = codebook_entropy = self.zero # whether to make the entropy loss positive or not through a (shifted) softplus if self.training and self.experimental_softplus_entropy_loss: entropy_aux_loss = F.softplus(entropy_aux_loss + self.entropy_loss_offset) # commit loss if self.training and self.commitment_loss_weight > 0.: commit_loss = F.mse_loss(original_input, quantized.detach(), reduction = 'none') if exists(mask): commit_loss = commit_loss[mask] commit_loss = commit_loss.mean() else: commit_loss = self.zero # input back to original dtype if needed if force_f32: x = x.type(orig_dtype) # merge back codebook dim x = rearrange(x, 'b n c d -> b n (c d)') # project out to feature dimension if needed x = self.project_out(x) # reconstitute image or video dimensions if should_transpose: x = unpack_one(x, ps, 'b * d') x = rearrange(x, 'b ... d -> b d ...') indices = unpack_one(indices, ps, 'b * c') # whether to remove single codebook dim if not self.keep_num_codebooks_dim: indices = rearrange(indices, '... 1 -> ...') # complete aux loss aux_loss = entropy_aux_loss * self.entropy_loss_weight + commit_loss * self.commitment_loss_weight # returns ret = Return(x, indices, aux_loss) if not return_loss_breakdown: return ret return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss) class GroupedResidualBSQ(Module): def __init__( self, *, dim, groups = 1, accept_image_fmap = False, **kwargs ): super().__init__() self.dim = dim self.groups = groups assert (dim % groups) == 0 dim_per_group = dim // groups self.accept_image_fmap = accept_image_fmap self.rvqs = nn.ModuleList([]) for _ in range(groups): self.rvqs.append(LFQ( dim = dim_per_group, **kwargs )) self.codebook_size = self.rvqs[0].codebook_size @property def codebooks(self): return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs)) @property def split_dim(self): return 1 if self.accept_image_fmap else -1 def get_codes_from_indices(self, indices): codes = tuple(rvq.get_codes_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices)) return torch.stack(codes) def get_output_from_indices(self, indices): outputs = tuple(rvq.get_output_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices)) return torch.cat(outputs, dim = self.split_dim) def forward( self, x, return_all_codes = False ): shape, split_dim = x.shape, self.split_dim assert shape[split_dim] == self.dim # split the feature dimension into groups x = x.chunk(self.groups, dim = split_dim) forward_kwargs = dict( ) # invoke residual vq on each group out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x)) out = tuple(zip(*out)) # otherwise, get all the zipped outputs and combine them quantized, all_indices, *maybe_aux_loss = out quantized = torch.cat(quantized, dim = split_dim) all_indices = torch.stack(all_indices) ret = (quantized, all_indices, *maybe_aux_loss) return ret