Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Upload 42 files
Browse files- .gitattributes +1 -0
- app.py +195 -140
- configs/config_dit_mel_seed_facodec_small.yml +97 -0
- configs/config_dit_mel_seed_wavenet.yml +79 -0
- configs/hifigan.yml +1 -1
- dac/__init__.py +16 -0
- dac/__main__.py +36 -0
- dac/model/__init__.py +4 -0
- dac/model/base.py +294 -0
- dac/model/dac.py +400 -0
- dac/model/discriminator.py +228 -0
- dac/model/encodec.py +320 -0
- dac/nn/__init__.py +3 -0
- dac/nn/layers.py +33 -0
- dac/nn/loss.py +368 -0
- dac/nn/quantize.py +339 -0
- dac/utils/__init__.py +123 -0
- dac/utils/decode.py +95 -0
- dac/utils/encode.py +94 -0
- examples/reference/dingzhen_0.wav +3 -0
- examples/source/yae_0.wav +0 -0
- modules/alias_free_torch/__init__.py +5 -0
- modules/alias_free_torch/act.py +29 -0
- modules/alias_free_torch/filter.py +96 -0
- modules/alias_free_torch/resample.py +57 -0
- modules/commons.py +38 -0
- modules/cosyvoice_tokenizer/frontend.py +53 -51
- modules/diffusion_transformer.py +2 -2
- modules/length_regulator.py +56 -2
- modules/quantize.py +229 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            examples/reference/dingzhen_0.wav filter=lfs diff=lfs merge=lfs -text
         | 
    	
        app.py
    CHANGED
    
    | @@ -1,140 +1,195 @@ | |
| 1 | 
            -
            import  | 
| 2 | 
            -
            import  | 
| 3 | 
            -
            import  | 
| 4 | 
            -
            import  | 
| 5 | 
            -
            import  | 
| 6 | 
            -
             | 
| 7 | 
            -
            import  | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 | 
            -
                                                            " | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
                model[key]. | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
            campplus_model | 
| 35 | 
            -
            campplus_model. | 
| 36 | 
            -
            campplus_model. | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
            from modules.hifigan. | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
                                                            " | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
            hift_gen | 
| 47 | 
            -
            hift_gen. | 
| 48 | 
            -
            hift_gen. | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
            speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
         | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
                 | 
| 60 | 
            -
                 | 
| 61 | 
            -
                " | 
| 62 | 
            -
             | 
| 63 | 
            -
                " | 
| 64 | 
            -
             | 
| 65 | 
            -
                 | 
| 66 | 
            -
             | 
| 67 | 
            -
             | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
                 | 
| 76 | 
            -
                 | 
| 77 | 
            -
                 | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
                #  | 
| 88 | 
            -
                 | 
| 89 | 
            -
                 | 
| 90 | 
            -
             | 
| 91 | 
            -
                 | 
| 92 | 
            -
                 | 
| 93 | 
            -
             | 
| 94 | 
            -
                 | 
| 95 | 
            -
                 | 
| 96 | 
            -
             | 
| 97 | 
            -
                # | 
| 98 | 
            -
                 | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
             | 
| 102 | 
            -
                 | 
| 103 | 
            -
                 | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
                 | 
| 111 | 
            -
             | 
| 112 | 
            -
                 | 
| 113 | 
            -
             | 
| 114 | 
            -
                 | 
| 115 | 
            -
                 | 
| 116 | 
            -
             | 
| 117 | 
            -
             | 
| 118 | 
            -
                 | 
| 119 | 
            -
             | 
| 120 | 
            -
             | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
             | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
                     | 
| 133 | 
            -
                     | 
| 134 | 
            -
                     | 
| 135 | 
            -
                     | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import torchaudio
         | 
| 4 | 
            +
            import librosa
         | 
| 5 | 
            +
            from modules.commons import build_model, load_checkpoint, recursive_munch
         | 
| 6 | 
            +
            import yaml
         | 
| 7 | 
            +
            from hf_utils import load_custom_model_from_hf
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Load model and configuration
         | 
| 10 | 
            +
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
         | 
| 13 | 
            +
                                                            "DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
         | 
| 14 | 
            +
                                                            "config_dit_mel_seed_facodec_small_wavenet.yml")
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            config = yaml.safe_load(open(dit_config_path, 'r'))
         | 
| 17 | 
            +
            model_params = recursive_munch(config['model_params'])
         | 
| 18 | 
            +
            model = build_model(model_params, stage='DiT')
         | 
| 19 | 
            +
            hop_length = config['preprocess_params']['spect_params']['hop_length']
         | 
| 20 | 
            +
            sr = config['preprocess_params']['sr']
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            # Load checkpoints
         | 
| 23 | 
            +
            model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
         | 
| 24 | 
            +
                                             load_only_params=True, ignore_modules=[], is_distributed=False)
         | 
| 25 | 
            +
            for key in model:
         | 
| 26 | 
            +
                model[key].eval()
         | 
| 27 | 
            +
                model[key].to(device)
         | 
| 28 | 
            +
            model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # Load additional modules
         | 
| 31 | 
            +
            from modules.campplus.DTDNN import CAMPPlus
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
         | 
| 34 | 
            +
            campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
         | 
| 35 | 
            +
            campplus_model.eval()
         | 
| 36 | 
            +
            campplus_model.to(device)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            from modules.hifigan.generator import HiFTGenerator
         | 
| 39 | 
            +
            from modules.hifigan.f0_predictor import ConvRNNF0Predictor
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
         | 
| 42 | 
            +
                                                            "hift.pt",
         | 
| 43 | 
            +
                                                            "hifigan.yml")
         | 
| 44 | 
            +
            hift_config = yaml.safe_load(open(hift_config_path, 'r'))
         | 
| 45 | 
            +
            hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
         | 
| 46 | 
            +
            hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
         | 
| 47 | 
            +
            hift_gen.eval()
         | 
| 48 | 
            +
            hift_gen.to(device)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
         | 
| 51 | 
            +
            if speech_tokenizer_type == 'cosyvoice':
         | 
| 52 | 
            +
                from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
         | 
| 53 | 
            +
                speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
         | 
| 54 | 
            +
                cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
         | 
| 55 | 
            +
                                                       device='cuda', device_id=0)
         | 
| 56 | 
            +
            elif speech_tokenizer_type == 'facodec':
         | 
| 57 | 
            +
                ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                codec_config = yaml.safe_load(open(config_path))
         | 
| 60 | 
            +
                codec_model_params = recursive_munch(codec_config['model_params'])
         | 
| 61 | 
            +
                codec_encoder = build_model(codec_model_params, stage="codec")
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                ckpt_params = torch.load(ckpt_path, map_location="cpu")
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                for key in codec_encoder:
         | 
| 66 | 
            +
                    codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
         | 
| 67 | 
            +
                _ = [codec_encoder[key].eval() for key in codec_encoder]
         | 
| 68 | 
            +
                _ = [codec_encoder[key].to(device) for key in codec_encoder]
         | 
| 69 | 
            +
            # Generate mel spectrograms
         | 
| 70 | 
            +
            mel_fn_args = {
         | 
| 71 | 
            +
                "n_fft": config['preprocess_params']['spect_params']['n_fft'],
         | 
| 72 | 
            +
                "win_size": config['preprocess_params']['spect_params']['win_length'],
         | 
| 73 | 
            +
                "hop_size": config['preprocess_params']['spect_params']['hop_length'],
         | 
| 74 | 
            +
                "num_mels": config['preprocess_params']['spect_params']['n_mels'],
         | 
| 75 | 
            +
                "sampling_rate": sr,
         | 
| 76 | 
            +
                "fmin": 0,
         | 
| 77 | 
            +
                "fmax": 8000,
         | 
| 78 | 
            +
                "center": False
         | 
| 79 | 
            +
            }
         | 
| 80 | 
            +
            from modules.audio import mel_spectrogram
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            @torch.no_grad()
         | 
| 85 | 
            +
            @torch.inference_mode()
         | 
| 86 | 
            +
            def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers):
         | 
| 87 | 
            +
                # Load audio
         | 
| 88 | 
            +
                source_audio = librosa.load(source, sr=sr)[0]
         | 
| 89 | 
            +
                ref_audio = librosa.load(target, sr=sr)[0]
         | 
| 90 | 
            +
                # source_sr, source_audio = source
         | 
| 91 | 
            +
                # ref_sr, ref_audio = target
         | 
| 92 | 
            +
                # # if any of the inputs has 2 channels, take the first only
         | 
| 93 | 
            +
                # if source_audio.ndim == 2:
         | 
| 94 | 
            +
                #     source_audio = source_audio[:, 0]
         | 
| 95 | 
            +
                # if ref_audio.ndim == 2:
         | 
| 96 | 
            +
                #     ref_audio = ref_audio[:, 0]
         | 
| 97 | 
            +
                #
         | 
| 98 | 
            +
                # source_audio, ref_audio = source_audio / 32768.0, ref_audio / 32768.0
         | 
| 99 | 
            +
                #
         | 
| 100 | 
            +
                # # if source or audio sr not equal to default sr, resample
         | 
| 101 | 
            +
                # if source_sr != sr:
         | 
| 102 | 
            +
                #     source_audio = librosa.resample(source_audio, source_sr, sr)
         | 
| 103 | 
            +
                # if ref_sr != sr:
         | 
| 104 | 
            +
                #     ref_audio = librosa.resample(ref_audio, ref_sr, sr)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                # Process audio
         | 
| 107 | 
            +
                source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
         | 
| 108 | 
            +
                ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                # Resample
         | 
| 111 | 
            +
                source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
         | 
| 112 | 
            +
                ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                # Extract features
         | 
| 115 | 
            +
                if speech_tokenizer_type == 'cosyvoice':
         | 
| 116 | 
            +
                    S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
         | 
| 117 | 
            +
                    S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
         | 
| 118 | 
            +
                elif speech_tokenizer_type == 'facodec':
         | 
| 119 | 
            +
                    converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
         | 
| 120 | 
            +
                    wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device)
         | 
| 121 | 
            +
                    waves_input = converted_waves_24k.unsqueeze(1)
         | 
| 122 | 
            +
                    z = codec_encoder.encoder(waves_input)
         | 
| 123 | 
            +
                    (
         | 
| 124 | 
            +
                        quantized,
         | 
| 125 | 
            +
                        codes
         | 
| 126 | 
            +
                    ) = codec_encoder.quantizer(
         | 
| 127 | 
            +
                        z,
         | 
| 128 | 
            +
                        waves_input,
         | 
| 129 | 
            +
                    )
         | 
| 130 | 
            +
                    S_alt = torch.cat([codes[1], codes[0]], dim=1)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    # S_ori should be extracted in the same way
         | 
| 133 | 
            +
                    waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
         | 
| 134 | 
            +
                    waves_input = waves_24k.unsqueeze(1)
         | 
| 135 | 
            +
                    z = codec_encoder.encoder(waves_input)
         | 
| 136 | 
            +
                    (
         | 
| 137 | 
            +
                        quantized,
         | 
| 138 | 
            +
                        codes
         | 
| 139 | 
            +
                    ) = codec_encoder.quantizer(
         | 
| 140 | 
            +
                        z,
         | 
| 141 | 
            +
                        waves_input,
         | 
| 142 | 
            +
                    )
         | 
| 143 | 
            +
                    S_ori = torch.cat([codes[1], codes[0]], dim=1)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                mel = to_mel(source_audio.to(device).float())
         | 
| 146 | 
            +
                mel2 = to_mel(ref_audio.to(device).float())
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
         | 
| 149 | 
            +
                target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
         | 
| 152 | 
            +
                                                          num_mel_bins=80,
         | 
| 153 | 
            +
                                                          dither=0,
         | 
| 154 | 
            +
                                                          sample_frequency=16000)
         | 
| 155 | 
            +
                feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
         | 
| 156 | 
            +
                style2 = campplus_model(feat2.unsqueeze(0))
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                # Length regulation
         | 
| 159 | 
            +
                cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0]
         | 
| 160 | 
            +
                prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0]
         | 
| 161 | 
            +
                cat_condition = torch.cat([prompt_condition, cond], dim=1)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                # Voice Conversion
         | 
| 164 | 
            +
                vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
         | 
| 165 | 
            +
                                                mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
         | 
| 166 | 
            +
                vc_target = vc_target[:, :, mel2.size(-1):]
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                # Convert to waveform
         | 
| 169 | 
            +
                vc_wave = hift_gen.inference(vc_target)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                return sr, vc_wave.squeeze(0).cpu().numpy()
         | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
            if __name__ == "__main__":
         | 
| 175 | 
            +
                description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
         | 
| 176 | 
            +
                inputs = [
         | 
| 177 | 
            +
                    gr.Audio(type="filepath", label="Source Audio"),
         | 
| 178 | 
            +
                    gr.Audio(type="filepath", label="Reference Audio"),
         | 
| 179 | 
            +
                    gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"),
         | 
| 180 | 
            +
                    gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
         | 
| 181 | 
            +
                    gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"),
         | 
| 182 | 
            +
                    gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"),
         | 
| 183 | 
            +
                ]
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]]
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                outputs = gr.Audio(label="Output Audio")
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                gr.Interface(fn=voice_conversion,
         | 
| 190 | 
            +
                             description=description,
         | 
| 191 | 
            +
                             inputs=inputs,
         | 
| 192 | 
            +
                             outputs=outputs,
         | 
| 193 | 
            +
                             title="Seed Voice Conversion",
         | 
| 194 | 
            +
                             examples=examples,
         | 
| 195 | 
            +
                             ).launch()
         | 
    	
        configs/config_dit_mel_seed_facodec_small.yml
    ADDED
    
    | @@ -0,0 +1,97 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            log_dir: "./runs/run_dit_mel_seed_facodec_small"
         | 
| 2 | 
            +
            save_freq: 1
         | 
| 3 | 
            +
            log_interval: 10
         | 
| 4 | 
            +
            save_interval: 1000
         | 
| 5 | 
            +
            device: "cuda"
         | 
| 6 | 
            +
            epochs: 1000 # number of epochs for first stage training (pre-training)
         | 
| 7 | 
            +
            batch_size: 2
         | 
| 8 | 
            +
            batch_length: 100 # maximum duration of audio in a batch (in seconds)
         | 
| 9 | 
            +
            max_len: 80 # maximum number of frames
         | 
| 10 | 
            +
            pretrained_model: ""
         | 
| 11 | 
            +
            pretrained_encoder: ""
         | 
| 12 | 
            +
            load_only_params: False # set to true if do not want to load epoch numbers and optimizer parameters
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            F0_path: "modules/JDC/bst.t7"
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            data_params:
         | 
| 17 | 
            +
              train_data: "./data/train.txt"
         | 
| 18 | 
            +
              val_data: "./data/val.txt"
         | 
| 19 | 
            +
              root_path: "./data/"
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            preprocess_params:
         | 
| 22 | 
            +
              sr: 22050
         | 
| 23 | 
            +
              spect_params:
         | 
| 24 | 
            +
                n_fft: 1024
         | 
| 25 | 
            +
                win_length: 1024
         | 
| 26 | 
            +
                hop_length: 256
         | 
| 27 | 
            +
                n_mels: 80
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            model_params:
         | 
| 30 | 
            +
              dit_type: "DiT" # uDiT or DiT
         | 
| 31 | 
            +
              reg_loss_type: "l1" # l1 or l2
         | 
| 32 | 
            +
             | 
| 33 | 
            +
              speech_tokenizer:
         | 
| 34 | 
            +
                type: 'facodec' # facodec or cosyvoice
         | 
| 35 | 
            +
                path: "checkpoints/speech_tokenizer_v1.onnx"
         | 
| 36 | 
            +
             | 
| 37 | 
            +
              style_encoder:
         | 
| 38 | 
            +
                dim: 192
         | 
| 39 | 
            +
                campplus_path: "checkpoints/campplus_cn_common.bin"
         | 
| 40 | 
            +
             | 
| 41 | 
            +
              DAC:
         | 
| 42 | 
            +
                encoder_dim: 64
         | 
| 43 | 
            +
                encoder_rates: [2, 5, 5, 6]
         | 
| 44 | 
            +
                decoder_dim: 1536
         | 
| 45 | 
            +
                decoder_rates: [ 6, 5, 5, 2 ]
         | 
| 46 | 
            +
                sr: 24000
         | 
| 47 | 
            +
             | 
| 48 | 
            +
              length_regulator:
         | 
| 49 | 
            +
                channels: 512
         | 
| 50 | 
            +
                is_discrete: true
         | 
| 51 | 
            +
                content_codebook_size: 1024
         | 
| 52 | 
            +
                in_frame_rate: 80
         | 
| 53 | 
            +
                out_frame_rate: 80
         | 
| 54 | 
            +
                sampling_ratios: [1, 1, 1, 1]
         | 
| 55 | 
            +
                token_dropout_prob: 0.3 # probability of performing token dropout
         | 
| 56 | 
            +
                token_dropout_range: 1.0 # maximum percentage of tokens to drop out
         | 
| 57 | 
            +
                n_codebooks: 3
         | 
| 58 | 
            +
                quantizer_dropout: 0.5
         | 
| 59 | 
            +
                f0_condition: false
         | 
| 60 | 
            +
                n_f0_bins: 512
         | 
| 61 | 
            +
             | 
| 62 | 
            +
              DiT:
         | 
| 63 | 
            +
                hidden_dim: 512
         | 
| 64 | 
            +
                num_heads: 8
         | 
| 65 | 
            +
                depth: 13
         | 
| 66 | 
            +
                class_dropout_prob: 0.1
         | 
| 67 | 
            +
                block_size: 8192
         | 
| 68 | 
            +
                in_channels: 80
         | 
| 69 | 
            +
                style_condition: true
         | 
| 70 | 
            +
                final_layer_type: 'wavenet'
         | 
| 71 | 
            +
                target: 'mel' # mel or codec
         | 
| 72 | 
            +
                content_dim: 512
         | 
| 73 | 
            +
                content_codebook_size: 1024
         | 
| 74 | 
            +
                content_type: 'discrete'
         | 
| 75 | 
            +
                f0_condition: true
         | 
| 76 | 
            +
                n_f0_bins: 512
         | 
| 77 | 
            +
                content_codebooks: 1
         | 
| 78 | 
            +
                is_causal: false
         | 
| 79 | 
            +
                long_skip_connection: true
         | 
| 80 | 
            +
                zero_prompt_speech_token: false # for prompt component, do not input corresponding speech token
         | 
| 81 | 
            +
                time_as_token: false
         | 
| 82 | 
            +
                style_as_token: false
         | 
| 83 | 
            +
                uvit_skip_connection: true
         | 
| 84 | 
            +
                add_resblock_in_transformer: false
         | 
| 85 | 
            +
             | 
| 86 | 
            +
              wavenet:
         | 
| 87 | 
            +
                hidden_dim: 512
         | 
| 88 | 
            +
                num_layers: 8
         | 
| 89 | 
            +
                kernel_size: 5
         | 
| 90 | 
            +
                dilation_rate: 1
         | 
| 91 | 
            +
                p_dropout: 0.2
         | 
| 92 | 
            +
                style_condition: true
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            loss_params:
         | 
| 95 | 
            +
              base_lr: 0.0001
         | 
| 96 | 
            +
              lambda_mel: 45
         | 
| 97 | 
            +
              lambda_kl: 1.0
         | 
    	
        configs/config_dit_mel_seed_wavenet.yml
    ADDED
    
    | @@ -0,0 +1,79 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            log_dir: "./runs/run_dit_mel_seed"
         | 
| 2 | 
            +
            save_freq: 1
         | 
| 3 | 
            +
            log_interval: 10
         | 
| 4 | 
            +
            save_interval: 1000
         | 
| 5 | 
            +
            device: "cuda"
         | 
| 6 | 
            +
            epochs: 1000 # number of epochs for first stage training (pre-training)
         | 
| 7 | 
            +
            batch_size: 4
         | 
| 8 | 
            +
            batch_length: 100 # maximum duration of audio in a batch (in seconds)
         | 
| 9 | 
            +
            max_len: 80 # maximum number of frames
         | 
| 10 | 
            +
            pretrained_model: ""
         | 
| 11 | 
            +
            pretrained_encoder: ""
         | 
| 12 | 
            +
            load_only_params: False # set to true if do not want to load epoch numbers and optimizer parameters
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            F0_path: "modules/JDC/bst.t7"
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            preprocess_params:
         | 
| 17 | 
            +
              sr: 22050
         | 
| 18 | 
            +
              spect_params:
         | 
| 19 | 
            +
                n_fft: 1024
         | 
| 20 | 
            +
                win_length: 1024
         | 
| 21 | 
            +
                hop_length: 256
         | 
| 22 | 
            +
                n_mels: 80
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            model_params:
         | 
| 25 | 
            +
              dit_type: "DiT" # uDiT or DiT
         | 
| 26 | 
            +
              reg_loss_type: "l2" # l1 or l2
         | 
| 27 | 
            +
             | 
| 28 | 
            +
              speech_tokenizer:
         | 
| 29 | 
            +
                path: "checkpoints/speech_tokenizer_v1.onnx"
         | 
| 30 | 
            +
             | 
| 31 | 
            +
              style_encoder:
         | 
| 32 | 
            +
                dim: 192
         | 
| 33 | 
            +
                campplus_path: "campplus_cn_common.bin"
         | 
| 34 | 
            +
             | 
| 35 | 
            +
              DAC:
         | 
| 36 | 
            +
                encoder_dim: 64
         | 
| 37 | 
            +
                encoder_rates: [2, 5, 5, 6]
         | 
| 38 | 
            +
                decoder_dim: 1536
         | 
| 39 | 
            +
                decoder_rates: [ 6, 5, 5, 2 ]
         | 
| 40 | 
            +
                sr: 24000
         | 
| 41 | 
            +
             | 
| 42 | 
            +
              length_regulator:
         | 
| 43 | 
            +
                channels: 768
         | 
| 44 | 
            +
                is_discrete: true
         | 
| 45 | 
            +
                content_codebook_size: 4096
         | 
| 46 | 
            +
                in_frame_rate: 50
         | 
| 47 | 
            +
                out_frame_rate: 80
         | 
| 48 | 
            +
                sampling_ratios: [1, 1, 1, 1]
         | 
| 49 | 
            +
             | 
| 50 | 
            +
              DiT:
         | 
| 51 | 
            +
                hidden_dim: 768
         | 
| 52 | 
            +
                num_heads: 12
         | 
| 53 | 
            +
                depth: 12
         | 
| 54 | 
            +
                class_dropout_prob: 0.1
         | 
| 55 | 
            +
                block_size: 8192
         | 
| 56 | 
            +
                in_channels: 80
         | 
| 57 | 
            +
                style_condition: true
         | 
| 58 | 
            +
                final_layer_type: 'wavenet'
         | 
| 59 | 
            +
                target: 'mel' # mel or codec
         | 
| 60 | 
            +
                content_dim: 768
         | 
| 61 | 
            +
                content_codebook_size: 1024
         | 
| 62 | 
            +
                content_type: 'discrete'
         | 
| 63 | 
            +
                f0_condition: false
         | 
| 64 | 
            +
                n_f0_bins: 512
         | 
| 65 | 
            +
                content_codebooks: 1
         | 
| 66 | 
            +
                is_causal: false
         | 
| 67 | 
            +
                long_skip_connection: true
         | 
| 68 | 
            +
                zero_prompt_speech_token: false # for prompt component, do not input corresponding speech token
         | 
| 69 | 
            +
             | 
| 70 | 
            +
              wavenet:
         | 
| 71 | 
            +
                hidden_dim: 768
         | 
| 72 | 
            +
                num_layers: 8
         | 
| 73 | 
            +
                kernel_size: 5
         | 
| 74 | 
            +
                dilation_rate: 1
         | 
| 75 | 
            +
                p_dropout: 0.2
         | 
| 76 | 
            +
                style_condition: true
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            loss_params:
         | 
| 79 | 
            +
              base_lr: 0.0001
         | 
    	
        configs/hifigan.yml
    CHANGED
    
    | @@ -22,4 +22,4 @@ f0_predictor: | |
| 22 | 
             
                in_channels: 80
         | 
| 23 | 
             
                cond_channels: 512
         | 
| 24 |  | 
| 25 | 
            -
            pretrained_model_path: "hift.pt"
         | 
|  | |
| 22 | 
             
                in_channels: 80
         | 
| 23 | 
             
                cond_channels: 512
         | 
| 24 |  | 
| 25 | 
            +
            pretrained_model_path: "checkpoints/hift.pt"
         | 
    	
        dac/__init__.py
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            __version__ = "1.0.0"
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # preserved here for legacy reasons
         | 
| 4 | 
            +
            __model_version__ = "latest"
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import audiotools
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            audiotools.ml.BaseModel.INTERN += ["dac.**"]
         | 
| 9 | 
            +
            audiotools.ml.BaseModel.EXTERN += ["einops"]
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            from . import nn
         | 
| 13 | 
            +
            from . import model
         | 
| 14 | 
            +
            from . import utils
         | 
| 15 | 
            +
            from .model import DAC
         | 
| 16 | 
            +
            from .model import DACFile
         | 
    	
        dac/__main__.py
    ADDED
    
    | @@ -0,0 +1,36 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import sys
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import argbind
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from dac.utils import download
         | 
| 6 | 
            +
            from dac.utils.decode import decode
         | 
| 7 | 
            +
            from dac.utils.encode import encode
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            STAGES = ["encode", "decode", "download"]
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def run(stage: str):
         | 
| 13 | 
            +
                """Run stages.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                Parameters
         | 
| 16 | 
            +
                ----------
         | 
| 17 | 
            +
                stage : str
         | 
| 18 | 
            +
                    Stage to run
         | 
| 19 | 
            +
                """
         | 
| 20 | 
            +
                if stage not in STAGES:
         | 
| 21 | 
            +
                    raise ValueError(f"Unknown command: {stage}. Allowed commands are {STAGES}")
         | 
| 22 | 
            +
                stage_fn = globals()[stage]
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                if stage == "download":
         | 
| 25 | 
            +
                    stage_fn()
         | 
| 26 | 
            +
                    return
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                stage_fn()
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            if __name__ == "__main__":
         | 
| 32 | 
            +
                group = sys.argv.pop(1)
         | 
| 33 | 
            +
                args = argbind.parse_args(group=group)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                with argbind.scope(args):
         | 
| 36 | 
            +
                    run(group)
         | 
    	
        dac/model/__init__.py
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from .base import CodecMixin
         | 
| 2 | 
            +
            from .base import DACFile
         | 
| 3 | 
            +
            from .dac import DAC
         | 
| 4 | 
            +
            from .discriminator import Discriminator
         | 
    	
        dac/model/base.py
    ADDED
    
    | @@ -0,0 +1,294 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            from dataclasses import dataclass
         | 
| 3 | 
            +
            from pathlib import Path
         | 
| 4 | 
            +
            from typing import Union
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import numpy as np
         | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
            import tqdm
         | 
| 9 | 
            +
            from audiotools import AudioSignal
         | 
| 10 | 
            +
            from torch import nn
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            SUPPORTED_VERSIONS = ["1.0.0"]
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            @dataclass
         | 
| 16 | 
            +
            class DACFile:
         | 
| 17 | 
            +
                codes: torch.Tensor
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                # Metadata
         | 
| 20 | 
            +
                chunk_length: int
         | 
| 21 | 
            +
                original_length: int
         | 
| 22 | 
            +
                input_db: float
         | 
| 23 | 
            +
                channels: int
         | 
| 24 | 
            +
                sample_rate: int
         | 
| 25 | 
            +
                padding: bool
         | 
| 26 | 
            +
                dac_version: str
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def save(self, path):
         | 
| 29 | 
            +
                    artifacts = {
         | 
| 30 | 
            +
                        "codes": self.codes.numpy().astype(np.uint16),
         | 
| 31 | 
            +
                        "metadata": {
         | 
| 32 | 
            +
                            "input_db": self.input_db.numpy().astype(np.float32),
         | 
| 33 | 
            +
                            "original_length": self.original_length,
         | 
| 34 | 
            +
                            "sample_rate": self.sample_rate,
         | 
| 35 | 
            +
                            "chunk_length": self.chunk_length,
         | 
| 36 | 
            +
                            "channels": self.channels,
         | 
| 37 | 
            +
                            "padding": self.padding,
         | 
| 38 | 
            +
                            "dac_version": SUPPORTED_VERSIONS[-1],
         | 
| 39 | 
            +
                        },
         | 
| 40 | 
            +
                    }
         | 
| 41 | 
            +
                    path = Path(path).with_suffix(".dac")
         | 
| 42 | 
            +
                    with open(path, "wb") as f:
         | 
| 43 | 
            +
                        np.save(f, artifacts)
         | 
| 44 | 
            +
                    return path
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                @classmethod
         | 
| 47 | 
            +
                def load(cls, path):
         | 
| 48 | 
            +
                    artifacts = np.load(path, allow_pickle=True)[()]
         | 
| 49 | 
            +
                    codes = torch.from_numpy(artifacts["codes"].astype(int))
         | 
| 50 | 
            +
                    if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
         | 
| 51 | 
            +
                        raise RuntimeError(
         | 
| 52 | 
            +
                            f"Given file {path} can't be loaded with this version of descript-audio-codec."
         | 
| 53 | 
            +
                        )
         | 
| 54 | 
            +
                    return cls(codes=codes, **artifacts["metadata"])
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            class CodecMixin:
         | 
| 58 | 
            +
                @property
         | 
| 59 | 
            +
                def padding(self):
         | 
| 60 | 
            +
                    if not hasattr(self, "_padding"):
         | 
| 61 | 
            +
                        self._padding = True
         | 
| 62 | 
            +
                    return self._padding
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                @padding.setter
         | 
| 65 | 
            +
                def padding(self, value):
         | 
| 66 | 
            +
                    assert isinstance(value, bool)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    layers = [
         | 
| 69 | 
            +
                        l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
         | 
| 70 | 
            +
                    ]
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    for layer in layers:
         | 
| 73 | 
            +
                        if value:
         | 
| 74 | 
            +
                            if hasattr(layer, "original_padding"):
         | 
| 75 | 
            +
                                layer.padding = layer.original_padding
         | 
| 76 | 
            +
                        else:
         | 
| 77 | 
            +
                            layer.original_padding = layer.padding
         | 
| 78 | 
            +
                            layer.padding = tuple(0 for _ in range(len(layer.padding)))
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    self._padding = value
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def get_delay(self):
         | 
| 83 | 
            +
                    # Any number works here, delay is invariant to input length
         | 
| 84 | 
            +
                    l_out = self.get_output_length(0)
         | 
| 85 | 
            +
                    L = l_out
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    layers = []
         | 
| 88 | 
            +
                    for layer in self.modules():
         | 
| 89 | 
            +
                        if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
         | 
| 90 | 
            +
                            layers.append(layer)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    for layer in reversed(layers):
         | 
| 93 | 
            +
                        d = layer.dilation[0]
         | 
| 94 | 
            +
                        k = layer.kernel_size[0]
         | 
| 95 | 
            +
                        s = layer.stride[0]
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                        if isinstance(layer, nn.ConvTranspose1d):
         | 
| 98 | 
            +
                            L = ((L - d * (k - 1) - 1) / s) + 1
         | 
| 99 | 
            +
                        elif isinstance(layer, nn.Conv1d):
         | 
| 100 | 
            +
                            L = (L - 1) * s + d * (k - 1) + 1
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                        L = math.ceil(L)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    l_in = L
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    return (l_in - l_out) // 2
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                def get_output_length(self, input_length):
         | 
| 109 | 
            +
                    L = input_length
         | 
| 110 | 
            +
                    # Calculate output length
         | 
| 111 | 
            +
                    for layer in self.modules():
         | 
| 112 | 
            +
                        if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
         | 
| 113 | 
            +
                            d = layer.dilation[0]
         | 
| 114 | 
            +
                            k = layer.kernel_size[0]
         | 
| 115 | 
            +
                            s = layer.stride[0]
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                            if isinstance(layer, nn.Conv1d):
         | 
| 118 | 
            +
                                L = ((L - d * (k - 1) - 1) / s) + 1
         | 
| 119 | 
            +
                            elif isinstance(layer, nn.ConvTranspose1d):
         | 
| 120 | 
            +
                                L = (L - 1) * s + d * (k - 1) + 1
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                            L = math.floor(L)
         | 
| 123 | 
            +
                    return L
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                @torch.no_grad()
         | 
| 126 | 
            +
                def compress(
         | 
| 127 | 
            +
                    self,
         | 
| 128 | 
            +
                    audio_path_or_signal: Union[str, Path, AudioSignal],
         | 
| 129 | 
            +
                    win_duration: float = 1.0,
         | 
| 130 | 
            +
                    verbose: bool = False,
         | 
| 131 | 
            +
                    normalize_db: float = -16,
         | 
| 132 | 
            +
                    n_quantizers: int = None,
         | 
| 133 | 
            +
                ) -> DACFile:
         | 
| 134 | 
            +
                    """Processes an audio signal from a file or AudioSignal object into
         | 
| 135 | 
            +
                    discrete codes. This function processes the signal in short windows,
         | 
| 136 | 
            +
                    using constant GPU memory.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    Parameters
         | 
| 139 | 
            +
                    ----------
         | 
| 140 | 
            +
                    audio_path_or_signal : Union[str, Path, AudioSignal]
         | 
| 141 | 
            +
                        audio signal to reconstruct
         | 
| 142 | 
            +
                    win_duration : float, optional
         | 
| 143 | 
            +
                        window duration in seconds, by default 5.0
         | 
| 144 | 
            +
                    verbose : bool, optional
         | 
| 145 | 
            +
                        by default False
         | 
| 146 | 
            +
                    normalize_db : float, optional
         | 
| 147 | 
            +
                        normalize db, by default -16
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    Returns
         | 
| 150 | 
            +
                    -------
         | 
| 151 | 
            +
                    DACFile
         | 
| 152 | 
            +
                        Object containing compressed codes and metadata
         | 
| 153 | 
            +
                        required for decompression
         | 
| 154 | 
            +
                    """
         | 
| 155 | 
            +
                    audio_signal = audio_path_or_signal
         | 
| 156 | 
            +
                    if isinstance(audio_signal, (str, Path)):
         | 
| 157 | 
            +
                        audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    self.eval()
         | 
| 160 | 
            +
                    original_padding = self.padding
         | 
| 161 | 
            +
                    original_device = audio_signal.device
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    audio_signal = audio_signal.clone()
         | 
| 164 | 
            +
                    original_sr = audio_signal.sample_rate
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    resample_fn = audio_signal.resample
         | 
| 167 | 
            +
                    loudness_fn = audio_signal.loudness
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    # If audio is > 10 minutes long, use the ffmpeg versions
         | 
| 170 | 
            +
                    if audio_signal.signal_duration >= 10 * 60 * 60:
         | 
| 171 | 
            +
                        resample_fn = audio_signal.ffmpeg_resample
         | 
| 172 | 
            +
                        loudness_fn = audio_signal.ffmpeg_loudness
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    original_length = audio_signal.signal_length
         | 
| 175 | 
            +
                    resample_fn(self.sample_rate)
         | 
| 176 | 
            +
                    input_db = loudness_fn()
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    if normalize_db is not None:
         | 
| 179 | 
            +
                        audio_signal.normalize(normalize_db)
         | 
| 180 | 
            +
                    audio_signal.ensure_max_of_audio()
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    nb, nac, nt = audio_signal.audio_data.shape
         | 
| 183 | 
            +
                    audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
         | 
| 184 | 
            +
                    win_duration = (
         | 
| 185 | 
            +
                        audio_signal.signal_duration if win_duration is None else win_duration
         | 
| 186 | 
            +
                    )
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    if audio_signal.signal_duration <= win_duration:
         | 
| 189 | 
            +
                        # Unchunked compression (used if signal length < win duration)
         | 
| 190 | 
            +
                        self.padding = True
         | 
| 191 | 
            +
                        n_samples = nt
         | 
| 192 | 
            +
                        hop = nt
         | 
| 193 | 
            +
                    else:
         | 
| 194 | 
            +
                        # Chunked inference
         | 
| 195 | 
            +
                        self.padding = False
         | 
| 196 | 
            +
                        # Zero-pad signal on either side by the delay
         | 
| 197 | 
            +
                        audio_signal.zero_pad(self.delay, self.delay)
         | 
| 198 | 
            +
                        n_samples = int(win_duration * self.sample_rate)
         | 
| 199 | 
            +
                        # Round n_samples to nearest hop length multiple
         | 
| 200 | 
            +
                        n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
         | 
| 201 | 
            +
                        hop = self.get_output_length(n_samples)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    codes = []
         | 
| 204 | 
            +
                    range_fn = range if not verbose else tqdm.trange
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    for i in range_fn(0, nt, hop):
         | 
| 207 | 
            +
                        x = audio_signal[..., i : i + n_samples]
         | 
| 208 | 
            +
                        x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                        audio_data = x.audio_data.to(self.device)
         | 
| 211 | 
            +
                        audio_data = self.preprocess(audio_data, self.sample_rate)
         | 
| 212 | 
            +
                        _, c, _, _, _ = self.encode(audio_data, n_quantizers)
         | 
| 213 | 
            +
                        codes.append(c.to(original_device))
         | 
| 214 | 
            +
                        chunk_length = c.shape[-1]
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    codes = torch.cat(codes, dim=-1)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    dac_file = DACFile(
         | 
| 219 | 
            +
                        codes=codes,
         | 
| 220 | 
            +
                        chunk_length=chunk_length,
         | 
| 221 | 
            +
                        original_length=original_length,
         | 
| 222 | 
            +
                        input_db=input_db,
         | 
| 223 | 
            +
                        channels=nac,
         | 
| 224 | 
            +
                        sample_rate=original_sr,
         | 
| 225 | 
            +
                        padding=self.padding,
         | 
| 226 | 
            +
                        dac_version=SUPPORTED_VERSIONS[-1],
         | 
| 227 | 
            +
                    )
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    if n_quantizers is not None:
         | 
| 230 | 
            +
                        codes = codes[:, :n_quantizers, :]
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    self.padding = original_padding
         | 
| 233 | 
            +
                    return dac_file
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                @torch.no_grad()
         | 
| 236 | 
            +
                def decompress(
         | 
| 237 | 
            +
                    self,
         | 
| 238 | 
            +
                    obj: Union[str, Path, DACFile],
         | 
| 239 | 
            +
                    verbose: bool = False,
         | 
| 240 | 
            +
                ) -> AudioSignal:
         | 
| 241 | 
            +
                    """Reconstruct audio from a given .dac file
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    Parameters
         | 
| 244 | 
            +
                    ----------
         | 
| 245 | 
            +
                    obj : Union[str, Path, DACFile]
         | 
| 246 | 
            +
                        .dac file location or corresponding DACFile object.
         | 
| 247 | 
            +
                    verbose : bool, optional
         | 
| 248 | 
            +
                        Prints progress if True, by default False
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    Returns
         | 
| 251 | 
            +
                    -------
         | 
| 252 | 
            +
                    AudioSignal
         | 
| 253 | 
            +
                        Object with the reconstructed audio
         | 
| 254 | 
            +
                    """
         | 
| 255 | 
            +
                    self.eval()
         | 
| 256 | 
            +
                    if isinstance(obj, (str, Path)):
         | 
| 257 | 
            +
                        obj = DACFile.load(obj)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    original_padding = self.padding
         | 
| 260 | 
            +
                    self.padding = obj.padding
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    range_fn = range if not verbose else tqdm.trange
         | 
| 263 | 
            +
                    codes = obj.codes
         | 
| 264 | 
            +
                    original_device = codes.device
         | 
| 265 | 
            +
                    chunk_length = obj.chunk_length
         | 
| 266 | 
            +
                    recons = []
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    for i in range_fn(0, codes.shape[-1], chunk_length):
         | 
| 269 | 
            +
                        c = codes[..., i : i + chunk_length].to(self.device)
         | 
| 270 | 
            +
                        z = self.quantizer.from_codes(c)[0]
         | 
| 271 | 
            +
                        r = self.decode(z)
         | 
| 272 | 
            +
                        recons.append(r.to(original_device))
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    recons = torch.cat(recons, dim=-1)
         | 
| 275 | 
            +
                    recons = AudioSignal(recons, self.sample_rate)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    resample_fn = recons.resample
         | 
| 278 | 
            +
                    loudness_fn = recons.loudness
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    # If audio is > 10 minutes long, use the ffmpeg versions
         | 
| 281 | 
            +
                    if recons.signal_duration >= 10 * 60 * 60:
         | 
| 282 | 
            +
                        resample_fn = recons.ffmpeg_resample
         | 
| 283 | 
            +
                        loudness_fn = recons.ffmpeg_loudness
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    recons.normalize(obj.input_db)
         | 
| 286 | 
            +
                    resample_fn(obj.sample_rate)
         | 
| 287 | 
            +
                    recons = recons[..., : obj.original_length]
         | 
| 288 | 
            +
                    loudness_fn()
         | 
| 289 | 
            +
                    recons.audio_data = recons.audio_data.reshape(
         | 
| 290 | 
            +
                        -1, obj.channels, obj.original_length
         | 
| 291 | 
            +
                    )
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    self.padding = original_padding
         | 
| 294 | 
            +
                    return recons
         | 
    	
        dac/model/dac.py
    ADDED
    
    | @@ -0,0 +1,400 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            from typing import List
         | 
| 3 | 
            +
            from typing import Union
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            from audiotools import AudioSignal
         | 
| 8 | 
            +
            from audiotools.ml import BaseModel
         | 
| 9 | 
            +
            from torch import nn
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            from .base import CodecMixin
         | 
| 12 | 
            +
            from dac.nn.layers import Snake1d
         | 
| 13 | 
            +
            from dac.nn.layers import WNConv1d
         | 
| 14 | 
            +
            from dac.nn.layers import WNConvTranspose1d
         | 
| 15 | 
            +
            from dac.nn.quantize import ResidualVectorQuantize
         | 
| 16 | 
            +
            from .encodec import SConv1d, SConvTranspose1d, SLSTM
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            def init_weights(m):
         | 
| 20 | 
            +
                if isinstance(m, nn.Conv1d):
         | 
| 21 | 
            +
                    nn.init.trunc_normal_(m.weight, std=0.02)
         | 
| 22 | 
            +
                    nn.init.constant_(m.bias, 0)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            class ResidualUnit(nn.Module):
         | 
| 26 | 
            +
                def __init__(self, dim: int = 16, dilation: int = 1, causal: bool = False):
         | 
| 27 | 
            +
                    super().__init__()
         | 
| 28 | 
            +
                    conv1d_type = SConv1d# if causal else WNConv1d
         | 
| 29 | 
            +
                    pad = ((7 - 1) * dilation) // 2
         | 
| 30 | 
            +
                    self.block = nn.Sequential(
         | 
| 31 | 
            +
                        Snake1d(dim),
         | 
| 32 | 
            +
                        conv1d_type(dim, dim, kernel_size=7, dilation=dilation, padding=pad, causal=causal, norm='weight_norm'),
         | 
| 33 | 
            +
                        Snake1d(dim),
         | 
| 34 | 
            +
                        conv1d_type(dim, dim, kernel_size=1, causal=causal, norm='weight_norm'),
         | 
| 35 | 
            +
                    )
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def forward(self, x):
         | 
| 38 | 
            +
                    y = self.block(x)
         | 
| 39 | 
            +
                    pad = (x.shape[-1] - y.shape[-1]) // 2
         | 
| 40 | 
            +
                    if pad > 0:
         | 
| 41 | 
            +
                        x = x[..., pad:-pad]
         | 
| 42 | 
            +
                    return x + y
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            class EncoderBlock(nn.Module):
         | 
| 46 | 
            +
                def __init__(self, dim: int = 16, stride: int = 1, causal: bool = False):
         | 
| 47 | 
            +
                    super().__init__()
         | 
| 48 | 
            +
                    conv1d_type = SConv1d# if causal else WNConv1d
         | 
| 49 | 
            +
                    self.block = nn.Sequential(
         | 
| 50 | 
            +
                        ResidualUnit(dim // 2, dilation=1, causal=causal),
         | 
| 51 | 
            +
                        ResidualUnit(dim // 2, dilation=3, causal=causal),
         | 
| 52 | 
            +
                        ResidualUnit(dim // 2, dilation=9, causal=causal),
         | 
| 53 | 
            +
                        Snake1d(dim // 2),
         | 
| 54 | 
            +
                        conv1d_type(
         | 
| 55 | 
            +
                            dim // 2,
         | 
| 56 | 
            +
                            dim,
         | 
| 57 | 
            +
                            kernel_size=2 * stride,
         | 
| 58 | 
            +
                            stride=stride,
         | 
| 59 | 
            +
                            padding=math.ceil(stride / 2),
         | 
| 60 | 
            +
                            causal=causal,
         | 
| 61 | 
            +
                            norm='weight_norm',
         | 
| 62 | 
            +
                        ),
         | 
| 63 | 
            +
                    )
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                def forward(self, x):
         | 
| 66 | 
            +
                    return self.block(x)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            class Encoder(nn.Module):
         | 
| 70 | 
            +
                def __init__(
         | 
| 71 | 
            +
                    self,
         | 
| 72 | 
            +
                    d_model: int = 64,
         | 
| 73 | 
            +
                    strides: list = [2, 4, 8, 8],
         | 
| 74 | 
            +
                    d_latent: int = 64,
         | 
| 75 | 
            +
                    causal: bool = False,
         | 
| 76 | 
            +
                    lstm: int = 2,
         | 
| 77 | 
            +
                ):
         | 
| 78 | 
            +
                    super().__init__()
         | 
| 79 | 
            +
                    conv1d_type = SConv1d# if causal else WNConv1d
         | 
| 80 | 
            +
                    # Create first convolution
         | 
| 81 | 
            +
                    self.block = [conv1d_type(1, d_model, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    # Create EncoderBlocks that double channels as they downsample by `stride`
         | 
| 84 | 
            +
                    for stride in strides:
         | 
| 85 | 
            +
                        d_model *= 2
         | 
| 86 | 
            +
                        self.block += [EncoderBlock(d_model, stride=stride, causal=causal)]
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    # Add LSTM if needed
         | 
| 89 | 
            +
                    self.use_lstm = lstm
         | 
| 90 | 
            +
                    if lstm:
         | 
| 91 | 
            +
                        self.block += [SLSTM(d_model, lstm)]
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    # Create last convolution
         | 
| 94 | 
            +
                    self.block += [
         | 
| 95 | 
            +
                        Snake1d(d_model),
         | 
| 96 | 
            +
                        conv1d_type(d_model, d_latent, kernel_size=3, padding=1, causal=causal, norm='weight_norm'),
         | 
| 97 | 
            +
                    ]
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    # Wrap black into nn.Sequential
         | 
| 100 | 
            +
                    self.block = nn.Sequential(*self.block)
         | 
| 101 | 
            +
                    self.enc_dim = d_model
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def forward(self, x):
         | 
| 104 | 
            +
                    return self.block(x)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def reset_cache(self):
         | 
| 107 | 
            +
                    # recursively find all submodules named SConv1d in self.block and use their reset_cache method
         | 
| 108 | 
            +
                    def reset_cache(m):
         | 
| 109 | 
            +
                        if isinstance(m, SConv1d) or isinstance(m, SLSTM):
         | 
| 110 | 
            +
                            m.reset_cache()
         | 
| 111 | 
            +
                            return
         | 
| 112 | 
            +
                        for child in m.children():
         | 
| 113 | 
            +
                            reset_cache(child)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    reset_cache(self.block)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            class DecoderBlock(nn.Module):
         | 
| 119 | 
            +
                def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1, causal: bool = False):
         | 
| 120 | 
            +
                    super().__init__()
         | 
| 121 | 
            +
                    conv1d_type = SConvTranspose1d #if causal else WNConvTranspose1d
         | 
| 122 | 
            +
                    self.block = nn.Sequential(
         | 
| 123 | 
            +
                        Snake1d(input_dim),
         | 
| 124 | 
            +
                        conv1d_type(
         | 
| 125 | 
            +
                            input_dim,
         | 
| 126 | 
            +
                            output_dim,
         | 
| 127 | 
            +
                            kernel_size=2 * stride,
         | 
| 128 | 
            +
                            stride=stride,
         | 
| 129 | 
            +
                            padding=math.ceil(stride / 2),
         | 
| 130 | 
            +
                            causal=causal,
         | 
| 131 | 
            +
                            norm='weight_norm'
         | 
| 132 | 
            +
                        ),
         | 
| 133 | 
            +
                        ResidualUnit(output_dim, dilation=1, causal=causal),
         | 
| 134 | 
            +
                        ResidualUnit(output_dim, dilation=3, causal=causal),
         | 
| 135 | 
            +
                        ResidualUnit(output_dim, dilation=9, causal=causal),
         | 
| 136 | 
            +
                    )
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                def forward(self, x):
         | 
| 139 | 
            +
                    return self.block(x)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
             | 
| 142 | 
            +
            class Decoder(nn.Module):
         | 
| 143 | 
            +
                def __init__(
         | 
| 144 | 
            +
                    self,
         | 
| 145 | 
            +
                    input_channel,
         | 
| 146 | 
            +
                    channels,
         | 
| 147 | 
            +
                    rates,
         | 
| 148 | 
            +
                    d_out: int = 1,
         | 
| 149 | 
            +
                    causal: bool = False,
         | 
| 150 | 
            +
                    lstm: int = 2,
         | 
| 151 | 
            +
                ):
         | 
| 152 | 
            +
                    super().__init__()
         | 
| 153 | 
            +
                    conv1d_type = SConv1d# if causal else WNConv1d
         | 
| 154 | 
            +
                    # Add first conv layer
         | 
| 155 | 
            +
                    layers = [conv1d_type(input_channel, channels, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    if lstm:
         | 
| 158 | 
            +
                        layers += [SLSTM(channels, num_layers=lstm)]
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    # Add upsampling + MRF blocks
         | 
| 161 | 
            +
                    for i, stride in enumerate(rates):
         | 
| 162 | 
            +
                        input_dim = channels // 2**i
         | 
| 163 | 
            +
                        output_dim = channels // 2 ** (i + 1)
         | 
| 164 | 
            +
                        layers += [DecoderBlock(input_dim, output_dim, stride, causal=causal)]
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    # Add final conv layer
         | 
| 167 | 
            +
                    layers += [
         | 
| 168 | 
            +
                        Snake1d(output_dim),
         | 
| 169 | 
            +
                        conv1d_type(output_dim, d_out, kernel_size=7, padding=3, causal=causal, norm='weight_norm'),
         | 
| 170 | 
            +
                        nn.Tanh(),
         | 
| 171 | 
            +
                    ]
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    self.model = nn.Sequential(*layers)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                def forward(self, x):
         | 
| 176 | 
            +
                    return self.model(x)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
             | 
| 179 | 
            +
            class DAC(BaseModel, CodecMixin):
         | 
| 180 | 
            +
                def __init__(
         | 
| 181 | 
            +
                    self,
         | 
| 182 | 
            +
                    encoder_dim: int = 64,
         | 
| 183 | 
            +
                    encoder_rates: List[int] = [2, 4, 8, 8],
         | 
| 184 | 
            +
                    latent_dim: int = None,
         | 
| 185 | 
            +
                    decoder_dim: int = 1536,
         | 
| 186 | 
            +
                    decoder_rates: List[int] = [8, 8, 4, 2],
         | 
| 187 | 
            +
                    n_codebooks: int = 9,
         | 
| 188 | 
            +
                    codebook_size: int = 1024,
         | 
| 189 | 
            +
                    codebook_dim: Union[int, list] = 8,
         | 
| 190 | 
            +
                    quantizer_dropout: bool = False,
         | 
| 191 | 
            +
                    sample_rate: int = 44100,
         | 
| 192 | 
            +
                    lstm: int = 2,
         | 
| 193 | 
            +
                    causal: bool = False,
         | 
| 194 | 
            +
                ):
         | 
| 195 | 
            +
                    super().__init__()
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    self.encoder_dim = encoder_dim
         | 
| 198 | 
            +
                    self.encoder_rates = encoder_rates
         | 
| 199 | 
            +
                    self.decoder_dim = decoder_dim
         | 
| 200 | 
            +
                    self.decoder_rates = decoder_rates
         | 
| 201 | 
            +
                    self.sample_rate = sample_rate
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    if latent_dim is None:
         | 
| 204 | 
            +
                        latent_dim = encoder_dim * (2 ** len(encoder_rates))
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    self.latent_dim = latent_dim
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    self.hop_length = np.prod(encoder_rates)
         | 
| 209 | 
            +
                    self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim, causal=causal, lstm=lstm)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    self.n_codebooks = n_codebooks
         | 
| 212 | 
            +
                    self.codebook_size = codebook_size
         | 
| 213 | 
            +
                    self.codebook_dim = codebook_dim
         | 
| 214 | 
            +
                    self.quantizer = ResidualVectorQuantize(
         | 
| 215 | 
            +
                        input_dim=latent_dim,
         | 
| 216 | 
            +
                        n_codebooks=n_codebooks,
         | 
| 217 | 
            +
                        codebook_size=codebook_size,
         | 
| 218 | 
            +
                        codebook_dim=codebook_dim,
         | 
| 219 | 
            +
                        quantizer_dropout=quantizer_dropout,
         | 
| 220 | 
            +
                    )
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                    self.decoder = Decoder(
         | 
| 223 | 
            +
                        latent_dim,
         | 
| 224 | 
            +
                        decoder_dim,
         | 
| 225 | 
            +
                        decoder_rates,
         | 
| 226 | 
            +
                        lstm=lstm,
         | 
| 227 | 
            +
                        causal=causal,
         | 
| 228 | 
            +
                    )
         | 
| 229 | 
            +
                    self.sample_rate = sample_rate
         | 
| 230 | 
            +
                    self.apply(init_weights)
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    self.delay = self.get_delay()
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def preprocess(self, audio_data, sample_rate):
         | 
| 235 | 
            +
                    if sample_rate is None:
         | 
| 236 | 
            +
                        sample_rate = self.sample_rate
         | 
| 237 | 
            +
                    assert sample_rate == self.sample_rate
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    length = audio_data.shape[-1]
         | 
| 240 | 
            +
                    right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
         | 
| 241 | 
            +
                    audio_data = nn.functional.pad(audio_data, (0, right_pad))
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    return audio_data
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                def encode(
         | 
| 246 | 
            +
                    self,
         | 
| 247 | 
            +
                    audio_data: torch.Tensor,
         | 
| 248 | 
            +
                    n_quantizers: int = None,
         | 
| 249 | 
            +
                ):
         | 
| 250 | 
            +
                    """Encode given audio data and return quantized latent codes
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    Parameters
         | 
| 253 | 
            +
                    ----------
         | 
| 254 | 
            +
                    audio_data : Tensor[B x 1 x T]
         | 
| 255 | 
            +
                        Audio data to encode
         | 
| 256 | 
            +
                    n_quantizers : int, optional
         | 
| 257 | 
            +
                        Number of quantizers to use, by default None
         | 
| 258 | 
            +
                        If None, all quantizers are used.
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    Returns
         | 
| 261 | 
            +
                    -------
         | 
| 262 | 
            +
                    dict
         | 
| 263 | 
            +
                        A dictionary with the following keys:
         | 
| 264 | 
            +
                        "z" : Tensor[B x D x T]
         | 
| 265 | 
            +
                            Quantized continuous representation of input
         | 
| 266 | 
            +
                        "codes" : Tensor[B x N x T]
         | 
| 267 | 
            +
                            Codebook indices for each codebook
         | 
| 268 | 
            +
                            (quantized discrete representation of input)
         | 
| 269 | 
            +
                        "latents" : Tensor[B x N*D x T]
         | 
| 270 | 
            +
                            Projected latents (continuous representation of input before quantization)
         | 
| 271 | 
            +
                        "vq/commitment_loss" : Tensor[1]
         | 
| 272 | 
            +
                            Commitment loss to train encoder to predict vectors closer to codebook
         | 
| 273 | 
            +
                            entries
         | 
| 274 | 
            +
                        "vq/codebook_loss" : Tensor[1]
         | 
| 275 | 
            +
                            Codebook loss to update the codebook
         | 
| 276 | 
            +
                        "length" : int
         | 
| 277 | 
            +
                            Number of samples in input audio
         | 
| 278 | 
            +
                    """
         | 
| 279 | 
            +
                    z = self.encoder(audio_data)
         | 
| 280 | 
            +
                    z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
         | 
| 281 | 
            +
                        z, n_quantizers
         | 
| 282 | 
            +
                    )
         | 
| 283 | 
            +
                    return z, codes, latents, commitment_loss, codebook_loss
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                def decode(self, z: torch.Tensor):
         | 
| 286 | 
            +
                    """Decode given latent codes and return audio data
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    Parameters
         | 
| 289 | 
            +
                    ----------
         | 
| 290 | 
            +
                    z : Tensor[B x D x T]
         | 
| 291 | 
            +
                        Quantized continuous representation of input
         | 
| 292 | 
            +
                    length : int, optional
         | 
| 293 | 
            +
                        Number of samples in output audio, by default None
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    Returns
         | 
| 296 | 
            +
                    -------
         | 
| 297 | 
            +
                    dict
         | 
| 298 | 
            +
                        A dictionary with the following keys:
         | 
| 299 | 
            +
                        "audio" : Tensor[B x 1 x length]
         | 
| 300 | 
            +
                            Decoded audio data.
         | 
| 301 | 
            +
                    """
         | 
| 302 | 
            +
                    return self.decoder(z)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                def forward(
         | 
| 305 | 
            +
                    self,
         | 
| 306 | 
            +
                    audio_data: torch.Tensor,
         | 
| 307 | 
            +
                    sample_rate: int = None,
         | 
| 308 | 
            +
                    n_quantizers: int = None,
         | 
| 309 | 
            +
                ):
         | 
| 310 | 
            +
                    """Model forward pass
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    Parameters
         | 
| 313 | 
            +
                    ----------
         | 
| 314 | 
            +
                    audio_data : Tensor[B x 1 x T]
         | 
| 315 | 
            +
                        Audio data to encode
         | 
| 316 | 
            +
                    sample_rate : int, optional
         | 
| 317 | 
            +
                        Sample rate of audio data in Hz, by default None
         | 
| 318 | 
            +
                        If None, defaults to `self.sample_rate`
         | 
| 319 | 
            +
                    n_quantizers : int, optional
         | 
| 320 | 
            +
                        Number of quantizers to use, by default None.
         | 
| 321 | 
            +
                        If None, all quantizers are used.
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    Returns
         | 
| 324 | 
            +
                    -------
         | 
| 325 | 
            +
                    dict
         | 
| 326 | 
            +
                        A dictionary with the following keys:
         | 
| 327 | 
            +
                        "z" : Tensor[B x D x T]
         | 
| 328 | 
            +
                            Quantized continuous representation of input
         | 
| 329 | 
            +
                        "codes" : Tensor[B x N x T]
         | 
| 330 | 
            +
                            Codebook indices for each codebook
         | 
| 331 | 
            +
                            (quantized discrete representation of input)
         | 
| 332 | 
            +
                        "latents" : Tensor[B x N*D x T]
         | 
| 333 | 
            +
                            Projected latents (continuous representation of input before quantization)
         | 
| 334 | 
            +
                        "vq/commitment_loss" : Tensor[1]
         | 
| 335 | 
            +
                            Commitment loss to train encoder to predict vectors closer to codebook
         | 
| 336 | 
            +
                            entries
         | 
| 337 | 
            +
                        "vq/codebook_loss" : Tensor[1]
         | 
| 338 | 
            +
                            Codebook loss to update the codebook
         | 
| 339 | 
            +
                        "length" : int
         | 
| 340 | 
            +
                            Number of samples in input audio
         | 
| 341 | 
            +
                        "audio" : Tensor[B x 1 x length]
         | 
| 342 | 
            +
                            Decoded audio data.
         | 
| 343 | 
            +
                    """
         | 
| 344 | 
            +
                    length = audio_data.shape[-1]
         | 
| 345 | 
            +
                    audio_data = self.preprocess(audio_data, sample_rate)
         | 
| 346 | 
            +
                    z, codes, latents, commitment_loss, codebook_loss = self.encode(
         | 
| 347 | 
            +
                        audio_data, n_quantizers
         | 
| 348 | 
            +
                    )
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    x = self.decode(z)
         | 
| 351 | 
            +
                    return {
         | 
| 352 | 
            +
                        "audio": x[..., :length],
         | 
| 353 | 
            +
                        "z": z,
         | 
| 354 | 
            +
                        "codes": codes,
         | 
| 355 | 
            +
                        "latents": latents,
         | 
| 356 | 
            +
                        "vq/commitment_loss": commitment_loss,
         | 
| 357 | 
            +
                        "vq/codebook_loss": codebook_loss,
         | 
| 358 | 
            +
                    }
         | 
| 359 | 
            +
             | 
| 360 | 
            +
             | 
| 361 | 
            +
            if __name__ == "__main__":
         | 
| 362 | 
            +
                import numpy as np
         | 
| 363 | 
            +
                from functools import partial
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                model = DAC().to("cpu")
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                for n, m in model.named_modules():
         | 
| 368 | 
            +
                    o = m.extra_repr()
         | 
| 369 | 
            +
                    p = sum([np.prod(p.size()) for p in m.parameters()])
         | 
| 370 | 
            +
                    fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
         | 
| 371 | 
            +
                    setattr(m, "extra_repr", partial(fn, o=o, p=p))
         | 
| 372 | 
            +
                print(model)
         | 
| 373 | 
            +
                print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                length = 88200 * 2
         | 
| 376 | 
            +
                x = torch.randn(1, 1, length).to(model.device)
         | 
| 377 | 
            +
                x.requires_grad_(True)
         | 
| 378 | 
            +
                x.retain_grad()
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                # Make a forward pass
         | 
| 381 | 
            +
                out = model(x)["audio"]
         | 
| 382 | 
            +
                print("Input shape:", x.shape)
         | 
| 383 | 
            +
                print("Output shape:", out.shape)
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                # Create gradient variable
         | 
| 386 | 
            +
                grad = torch.zeros_like(out)
         | 
| 387 | 
            +
                grad[:, :, grad.shape[-1] // 2] = 1
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                # Make a backward pass
         | 
| 390 | 
            +
                out.backward(grad)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                # Check non-zero values
         | 
| 393 | 
            +
                gradmap = x.grad.squeeze(0)
         | 
| 394 | 
            +
                gradmap = (gradmap != 0).sum(0)  # sum across features
         | 
| 395 | 
            +
                rf = (gradmap != 0).sum()
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                print(f"Receptive field: {rf.item()}")
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
         | 
| 400 | 
            +
                model.decompress(model.compress(x, verbose=True), verbose=True)
         | 
    	
        dac/model/discriminator.py
    ADDED
    
    | @@ -0,0 +1,228 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
            from audiotools import AudioSignal
         | 
| 5 | 
            +
            from audiotools import ml
         | 
| 6 | 
            +
            from audiotools import STFTParams
         | 
| 7 | 
            +
            from einops import rearrange
         | 
| 8 | 
            +
            from torch.nn.utils import weight_norm
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            def WNConv1d(*args, **kwargs):
         | 
| 12 | 
            +
                act = kwargs.pop("act", True)
         | 
| 13 | 
            +
                conv = weight_norm(nn.Conv1d(*args, **kwargs))
         | 
| 14 | 
            +
                if not act:
         | 
| 15 | 
            +
                    return conv
         | 
| 16 | 
            +
                return nn.Sequential(conv, nn.LeakyReLU(0.1))
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            def WNConv2d(*args, **kwargs):
         | 
| 20 | 
            +
                act = kwargs.pop("act", True)
         | 
| 21 | 
            +
                conv = weight_norm(nn.Conv2d(*args, **kwargs))
         | 
| 22 | 
            +
                if not act:
         | 
| 23 | 
            +
                    return conv
         | 
| 24 | 
            +
                return nn.Sequential(conv, nn.LeakyReLU(0.1))
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class MPD(nn.Module):
         | 
| 28 | 
            +
                def __init__(self, period):
         | 
| 29 | 
            +
                    super().__init__()
         | 
| 30 | 
            +
                    self.period = period
         | 
| 31 | 
            +
                    self.convs = nn.ModuleList(
         | 
| 32 | 
            +
                        [
         | 
| 33 | 
            +
                            WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
         | 
| 34 | 
            +
                            WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
         | 
| 35 | 
            +
                            WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
         | 
| 36 | 
            +
                            WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
         | 
| 37 | 
            +
                            WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
         | 
| 38 | 
            +
                        ]
         | 
| 39 | 
            +
                    )
         | 
| 40 | 
            +
                    self.conv_post = WNConv2d(
         | 
| 41 | 
            +
                        1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
         | 
| 42 | 
            +
                    )
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                def pad_to_period(self, x):
         | 
| 45 | 
            +
                    t = x.shape[-1]
         | 
| 46 | 
            +
                    x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
         | 
| 47 | 
            +
                    return x
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def forward(self, x):
         | 
| 50 | 
            +
                    fmap = []
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    x = self.pad_to_period(x)
         | 
| 53 | 
            +
                    x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    for layer in self.convs:
         | 
| 56 | 
            +
                        x = layer(x)
         | 
| 57 | 
            +
                        fmap.append(x)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    x = self.conv_post(x)
         | 
| 60 | 
            +
                    fmap.append(x)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    return fmap
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            class MSD(nn.Module):
         | 
| 66 | 
            +
                def __init__(self, rate: int = 1, sample_rate: int = 44100):
         | 
| 67 | 
            +
                    super().__init__()
         | 
| 68 | 
            +
                    self.convs = nn.ModuleList(
         | 
| 69 | 
            +
                        [
         | 
| 70 | 
            +
                            WNConv1d(1, 16, 15, 1, padding=7),
         | 
| 71 | 
            +
                            WNConv1d(16, 64, 41, 4, groups=4, padding=20),
         | 
| 72 | 
            +
                            WNConv1d(64, 256, 41, 4, groups=16, padding=20),
         | 
| 73 | 
            +
                            WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
         | 
| 74 | 
            +
                            WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
         | 
| 75 | 
            +
                            WNConv1d(1024, 1024, 5, 1, padding=2),
         | 
| 76 | 
            +
                        ]
         | 
| 77 | 
            +
                    )
         | 
| 78 | 
            +
                    self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
         | 
| 79 | 
            +
                    self.sample_rate = sample_rate
         | 
| 80 | 
            +
                    self.rate = rate
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def forward(self, x):
         | 
| 83 | 
            +
                    x = AudioSignal(x, self.sample_rate)
         | 
| 84 | 
            +
                    x.resample(self.sample_rate // self.rate)
         | 
| 85 | 
            +
                    x = x.audio_data
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    fmap = []
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    for l in self.convs:
         | 
| 90 | 
            +
                        x = l(x)
         | 
| 91 | 
            +
                        fmap.append(x)
         | 
| 92 | 
            +
                    x = self.conv_post(x)
         | 
| 93 | 
            +
                    fmap.append(x)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    return fmap
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
            class MRD(nn.Module):
         | 
| 102 | 
            +
                def __init__(
         | 
| 103 | 
            +
                    self,
         | 
| 104 | 
            +
                    window_length: int,
         | 
| 105 | 
            +
                    hop_factor: float = 0.25,
         | 
| 106 | 
            +
                    sample_rate: int = 44100,
         | 
| 107 | 
            +
                    bands: list = BANDS,
         | 
| 108 | 
            +
                ):
         | 
| 109 | 
            +
                    """Complex multi-band spectrogram discriminator.
         | 
| 110 | 
            +
                    Parameters
         | 
| 111 | 
            +
                    ----------
         | 
| 112 | 
            +
                    window_length : int
         | 
| 113 | 
            +
                        Window length of STFT.
         | 
| 114 | 
            +
                    hop_factor : float, optional
         | 
| 115 | 
            +
                        Hop factor of the STFT, defaults to ``0.25 * window_length``.
         | 
| 116 | 
            +
                    sample_rate : int, optional
         | 
| 117 | 
            +
                        Sampling rate of audio in Hz, by default 44100
         | 
| 118 | 
            +
                    bands : list, optional
         | 
| 119 | 
            +
                        Bands to run discriminator over.
         | 
| 120 | 
            +
                    """
         | 
| 121 | 
            +
                    super().__init__()
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    self.window_length = window_length
         | 
| 124 | 
            +
                    self.hop_factor = hop_factor
         | 
| 125 | 
            +
                    self.sample_rate = sample_rate
         | 
| 126 | 
            +
                    self.stft_params = STFTParams(
         | 
| 127 | 
            +
                        window_length=window_length,
         | 
| 128 | 
            +
                        hop_length=int(window_length * hop_factor),
         | 
| 129 | 
            +
                        match_stride=True,
         | 
| 130 | 
            +
                    )
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    n_fft = window_length // 2 + 1
         | 
| 133 | 
            +
                    bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
         | 
| 134 | 
            +
                    self.bands = bands
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    ch = 32
         | 
| 137 | 
            +
                    convs = lambda: nn.ModuleList(
         | 
| 138 | 
            +
                        [
         | 
| 139 | 
            +
                            WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
         | 
| 140 | 
            +
                            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
         | 
| 141 | 
            +
                            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
         | 
| 142 | 
            +
                            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
         | 
| 143 | 
            +
                            WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
         | 
| 144 | 
            +
                        ]
         | 
| 145 | 
            +
                    )
         | 
| 146 | 
            +
                    self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
         | 
| 147 | 
            +
                    self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                def spectrogram(self, x):
         | 
| 150 | 
            +
                    x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
         | 
| 151 | 
            +
                    x = torch.view_as_real(x.stft())
         | 
| 152 | 
            +
                    x = rearrange(x, "b 1 f t c -> (b 1) c t f")
         | 
| 153 | 
            +
                    # Split into bands
         | 
| 154 | 
            +
                    x_bands = [x[..., b[0] : b[1]] for b in self.bands]
         | 
| 155 | 
            +
                    return x_bands
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                def forward(self, x):
         | 
| 158 | 
            +
                    x_bands = self.spectrogram(x)
         | 
| 159 | 
            +
                    fmap = []
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    x = []
         | 
| 162 | 
            +
                    for band, stack in zip(x_bands, self.band_convs):
         | 
| 163 | 
            +
                        for layer in stack:
         | 
| 164 | 
            +
                            band = layer(band)
         | 
| 165 | 
            +
                            fmap.append(band)
         | 
| 166 | 
            +
                        x.append(band)
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    x = torch.cat(x, dim=-1)
         | 
| 169 | 
            +
                    x = self.conv_post(x)
         | 
| 170 | 
            +
                    fmap.append(x)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    return fmap
         | 
| 173 | 
            +
             | 
| 174 | 
            +
             | 
| 175 | 
            +
            class Discriminator(nn.Module):
         | 
| 176 | 
            +
                def __init__(
         | 
| 177 | 
            +
                    self,
         | 
| 178 | 
            +
                    rates: list = [],
         | 
| 179 | 
            +
                    periods: list = [2, 3, 5, 7, 11],
         | 
| 180 | 
            +
                    fft_sizes: list = [2048, 1024, 512],
         | 
| 181 | 
            +
                    sample_rate: int = 44100,
         | 
| 182 | 
            +
                    bands: list = BANDS,
         | 
| 183 | 
            +
                ):
         | 
| 184 | 
            +
                    """Discriminator that combines multiple discriminators.
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    Parameters
         | 
| 187 | 
            +
                    ----------
         | 
| 188 | 
            +
                    rates : list, optional
         | 
| 189 | 
            +
                        sampling rates (in Hz) to run MSD at, by default []
         | 
| 190 | 
            +
                        If empty, MSD is not used.
         | 
| 191 | 
            +
                    periods : list, optional
         | 
| 192 | 
            +
                        periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
         | 
| 193 | 
            +
                    fft_sizes : list, optional
         | 
| 194 | 
            +
                        Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
         | 
| 195 | 
            +
                    sample_rate : int, optional
         | 
| 196 | 
            +
                        Sampling rate of audio in Hz, by default 44100
         | 
| 197 | 
            +
                    bands : list, optional
         | 
| 198 | 
            +
                        Bands to run MRD at, by default `BANDS`
         | 
| 199 | 
            +
                    """
         | 
| 200 | 
            +
                    super().__init__()
         | 
| 201 | 
            +
                    discs = []
         | 
| 202 | 
            +
                    discs += [MPD(p) for p in periods]
         | 
| 203 | 
            +
                    discs += [MSD(r, sample_rate=sample_rate) for r in rates]
         | 
| 204 | 
            +
                    discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
         | 
| 205 | 
            +
                    self.discriminators = nn.ModuleList(discs)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                def preprocess(self, y):
         | 
| 208 | 
            +
                    # Remove DC offset
         | 
| 209 | 
            +
                    y = y - y.mean(dim=-1, keepdims=True)
         | 
| 210 | 
            +
                    # Peak normalize the volume of input audio
         | 
| 211 | 
            +
                    y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
         | 
| 212 | 
            +
                    return y
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                def forward(self, x):
         | 
| 215 | 
            +
                    x = self.preprocess(x)
         | 
| 216 | 
            +
                    fmaps = [d(x) for d in self.discriminators]
         | 
| 217 | 
            +
                    return fmaps
         | 
| 218 | 
            +
             | 
| 219 | 
            +
             | 
| 220 | 
            +
            if __name__ == "__main__":
         | 
| 221 | 
            +
                disc = Discriminator()
         | 
| 222 | 
            +
                x = torch.zeros(1, 1, 44100)
         | 
| 223 | 
            +
                results = disc(x)
         | 
| 224 | 
            +
                for i, result in enumerate(results):
         | 
| 225 | 
            +
                    print(f"disc{i}")
         | 
| 226 | 
            +
                    for i, r in enumerate(result):
         | 
| 227 | 
            +
                        print(r.shape, r.mean(), r.min(), r.max())
         | 
| 228 | 
            +
                    print()
         | 
    	
        dac/model/encodec.py
    ADDED
    
    | @@ -0,0 +1,320 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            """Convolutional layers wrappers and utilities."""
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import math
         | 
| 10 | 
            +
            import typing as tp
         | 
| 11 | 
            +
            import warnings
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            import torch
         | 
| 14 | 
            +
            from torch import nn
         | 
| 15 | 
            +
            from torch.nn import functional as F
         | 
| 16 | 
            +
            from torch.nn.utils import spectral_norm, weight_norm
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import typing as tp
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            import einops
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            class ConvLayerNorm(nn.LayerNorm):
         | 
| 24 | 
            +
                """
         | 
| 25 | 
            +
                Convolution-friendly LayerNorm that moves channels to last dimensions
         | 
| 26 | 
            +
                before running the normalization and moves them back to original position right after.
         | 
| 27 | 
            +
                """
         | 
| 28 | 
            +
                def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
         | 
| 29 | 
            +
                    super().__init__(normalized_shape, **kwargs)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                def forward(self, x):
         | 
| 32 | 
            +
                    x = einops.rearrange(x, 'b ... t -> b t ...')
         | 
| 33 | 
            +
                    x = super().forward(x)
         | 
| 34 | 
            +
                    x = einops.rearrange(x, 'b t ... -> b ... t')
         | 
| 35 | 
            +
                    return
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
         | 
| 39 | 
            +
                                             'time_layer_norm', 'layer_norm', 'time_group_norm'])
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
         | 
| 43 | 
            +
                assert norm in CONV_NORMALIZATIONS
         | 
| 44 | 
            +
                if norm == 'weight_norm':
         | 
| 45 | 
            +
                    return weight_norm(module)
         | 
| 46 | 
            +
                elif norm == 'spectral_norm':
         | 
| 47 | 
            +
                    return spectral_norm(module)
         | 
| 48 | 
            +
                else:
         | 
| 49 | 
            +
                    # We already check was in CONV_NORMALIZATION, so any other choice
         | 
| 50 | 
            +
                    # doesn't need reparametrization.
         | 
| 51 | 
            +
                    return module
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
         | 
| 55 | 
            +
                """Return the proper normalization module. If causal is True, this will ensure the returned
         | 
| 56 | 
            +
                module is causal, or return an error if the normalization doesn't support causal evaluation.
         | 
| 57 | 
            +
                """
         | 
| 58 | 
            +
                assert norm in CONV_NORMALIZATIONS
         | 
| 59 | 
            +
                if norm == 'layer_norm':
         | 
| 60 | 
            +
                    assert isinstance(module, nn.modules.conv._ConvNd)
         | 
| 61 | 
            +
                    return ConvLayerNorm(module.out_channels, **norm_kwargs)
         | 
| 62 | 
            +
                elif norm == 'time_group_norm':
         | 
| 63 | 
            +
                    if causal:
         | 
| 64 | 
            +
                        raise ValueError("GroupNorm doesn't support causal evaluation.")
         | 
| 65 | 
            +
                    assert isinstance(module, nn.modules.conv._ConvNd)
         | 
| 66 | 
            +
                    return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
         | 
| 67 | 
            +
                else:
         | 
| 68 | 
            +
                    return nn.Identity()
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
         | 
| 72 | 
            +
                                             padding_total: int = 0) -> int:
         | 
| 73 | 
            +
                """See `pad_for_conv1d`.
         | 
| 74 | 
            +
                """
         | 
| 75 | 
            +
                length = x.shape[-1]
         | 
| 76 | 
            +
                n_frames = (length - kernel_size + padding_total) / stride + 1
         | 
| 77 | 
            +
                ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
         | 
| 78 | 
            +
                return ideal_length - length
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
         | 
| 82 | 
            +
                """Pad for a convolution to make sure that the last window is full.
         | 
| 83 | 
            +
                Extra padding is added at the end. This is required to ensure that we can rebuild
         | 
| 84 | 
            +
                an output of the same length, as otherwise, even with padding, some time steps
         | 
| 85 | 
            +
                might get removed.
         | 
| 86 | 
            +
                For instance, with total padding = 4, kernel size = 4, stride = 2:
         | 
| 87 | 
            +
                    0 0 1 2 3 4 5 0 0   # (0s are padding)
         | 
| 88 | 
            +
                    1   2   3           # (output frames of a convolution, last 0 is never used)
         | 
| 89 | 
            +
                    0 0 1 2 3 4 5 0     # (output of tr. conv., but pos. 5 is going to get removed as padding)
         | 
| 90 | 
            +
                        1 2 3 4         # once you removed padding, we are missing one time step !
         | 
| 91 | 
            +
                """
         | 
| 92 | 
            +
                extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
         | 
| 93 | 
            +
                return F.pad(x, (0, extra_padding))
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
         | 
| 97 | 
            +
                """Tiny wrapper around F.pad, just to allow for reflect padding on small input.
         | 
| 98 | 
            +
                If this is the case, we insert extra 0 padding to the right before the reflection happen.
         | 
| 99 | 
            +
                """
         | 
| 100 | 
            +
                length = x.shape[-1]
         | 
| 101 | 
            +
                padding_left, padding_right = paddings
         | 
| 102 | 
            +
                assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
         | 
| 103 | 
            +
                if mode == 'reflect':
         | 
| 104 | 
            +
                    max_pad = max(padding_left, padding_right)
         | 
| 105 | 
            +
                    extra_pad = 0
         | 
| 106 | 
            +
                    if length <= max_pad:
         | 
| 107 | 
            +
                        extra_pad = max_pad - length + 1
         | 
| 108 | 
            +
                        x = F.pad(x, (0, extra_pad))
         | 
| 109 | 
            +
                    padded = F.pad(x, paddings, mode, value)
         | 
| 110 | 
            +
                    end = padded.shape[-1] - extra_pad
         | 
| 111 | 
            +
                    return padded[..., :end]
         | 
| 112 | 
            +
                else:
         | 
| 113 | 
            +
                    return F.pad(x, paddings, mode, value)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
             | 
| 116 | 
            +
            def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
         | 
| 117 | 
            +
                """Remove padding from x, handling properly zero padding. Only for 1d!"""
         | 
| 118 | 
            +
                padding_left, padding_right = paddings
         | 
| 119 | 
            +
                assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
         | 
| 120 | 
            +
                assert (padding_left + padding_right) <= x.shape[-1]
         | 
| 121 | 
            +
                end = x.shape[-1] - padding_right
         | 
| 122 | 
            +
                return x[..., padding_left: end]
         | 
| 123 | 
            +
             | 
| 124 | 
            +
             | 
| 125 | 
            +
            class NormConv1d(nn.Module):
         | 
| 126 | 
            +
                """Wrapper around Conv1d and normalization applied to this conv
         | 
| 127 | 
            +
                to provide a uniform interface across normalization approaches.
         | 
| 128 | 
            +
                """
         | 
| 129 | 
            +
                def __init__(self, *args, causal: bool = False, norm: str = 'none',
         | 
| 130 | 
            +
                             norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
         | 
| 131 | 
            +
                    super().__init__()
         | 
| 132 | 
            +
                    self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
         | 
| 133 | 
            +
                    self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
         | 
| 134 | 
            +
                    self.norm_type = norm
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def forward(self, x):
         | 
| 137 | 
            +
                    x = self.conv(x)
         | 
| 138 | 
            +
                    x = self.norm(x)
         | 
| 139 | 
            +
                    return x
         | 
| 140 | 
            +
             | 
| 141 | 
            +
             | 
| 142 | 
            +
            class NormConv2d(nn.Module):
         | 
| 143 | 
            +
                """Wrapper around Conv2d and normalization applied to this conv
         | 
| 144 | 
            +
                to provide a uniform interface across normalization approaches.
         | 
| 145 | 
            +
                """
         | 
| 146 | 
            +
                def __init__(self, *args, norm: str = 'none',
         | 
| 147 | 
            +
                             norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
         | 
| 148 | 
            +
                    super().__init__()
         | 
| 149 | 
            +
                    self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
         | 
| 150 | 
            +
                    self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
         | 
| 151 | 
            +
                    self.norm_type = norm
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def forward(self, x):
         | 
| 154 | 
            +
                    x = self.conv(x)
         | 
| 155 | 
            +
                    x = self.norm(x)
         | 
| 156 | 
            +
                    return x
         | 
| 157 | 
            +
             | 
| 158 | 
            +
             | 
| 159 | 
            +
            class NormConvTranspose1d(nn.Module):
         | 
| 160 | 
            +
                """Wrapper around ConvTranspose1d and normalization applied to this conv
         | 
| 161 | 
            +
                to provide a uniform interface across normalization approaches.
         | 
| 162 | 
            +
                """
         | 
| 163 | 
            +
                def __init__(self, *args, causal: bool = False, norm: str = 'none',
         | 
| 164 | 
            +
                             norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
         | 
| 165 | 
            +
                    super().__init__()
         | 
| 166 | 
            +
                    self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
         | 
| 167 | 
            +
                    self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
         | 
| 168 | 
            +
                    self.norm_type = norm
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                def forward(self, x):
         | 
| 171 | 
            +
                    x = self.convtr(x)
         | 
| 172 | 
            +
                    x = self.norm(x)
         | 
| 173 | 
            +
                    return x
         | 
| 174 | 
            +
             | 
| 175 | 
            +
             | 
| 176 | 
            +
            class NormConvTranspose2d(nn.Module):
         | 
| 177 | 
            +
                """Wrapper around ConvTranspose2d and normalization applied to this conv
         | 
| 178 | 
            +
                to provide a uniform interface across normalization approaches.
         | 
| 179 | 
            +
                """
         | 
| 180 | 
            +
                def __init__(self, *args, norm: str = 'none',
         | 
| 181 | 
            +
                             norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
         | 
| 182 | 
            +
                    super().__init__()
         | 
| 183 | 
            +
                    self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
         | 
| 184 | 
            +
                    self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def forward(self, x):
         | 
| 187 | 
            +
                    x = self.convtr(x)
         | 
| 188 | 
            +
                    x = self.norm(x)
         | 
| 189 | 
            +
                    return x
         | 
| 190 | 
            +
             | 
| 191 | 
            +
             | 
| 192 | 
            +
            class SConv1d(nn.Module):
         | 
| 193 | 
            +
                """Conv1d with some builtin handling of asymmetric or causal padding
         | 
| 194 | 
            +
                and normalization.
         | 
| 195 | 
            +
                """
         | 
| 196 | 
            +
                def __init__(self, in_channels: int, out_channels: int,
         | 
| 197 | 
            +
                             kernel_size: int, stride: int = 1, dilation: int = 1,
         | 
| 198 | 
            +
                             groups: int = 1, bias: bool = True, causal: bool = False,
         | 
| 199 | 
            +
                             norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
         | 
| 200 | 
            +
                             pad_mode: str = 'reflect', **kwargs):
         | 
| 201 | 
            +
                    super().__init__()
         | 
| 202 | 
            +
                    # warn user on unusual setup between dilation and stride
         | 
| 203 | 
            +
                    if stride > 1 and dilation > 1:
         | 
| 204 | 
            +
                        warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
         | 
| 205 | 
            +
                                      f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
         | 
| 206 | 
            +
                    self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
         | 
| 207 | 
            +
                                           dilation=dilation, groups=groups, bias=bias, causal=causal,
         | 
| 208 | 
            +
                                           norm=norm, norm_kwargs=norm_kwargs)
         | 
| 209 | 
            +
                    self.causal = causal
         | 
| 210 | 
            +
                    self.pad_mode = pad_mode
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    self.cache_enabled = False
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                def reset_cache(self):
         | 
| 215 | 
            +
                    """Reset the cache when starting a new stream."""
         | 
| 216 | 
            +
                    self.cache = None
         | 
| 217 | 
            +
                    self.cache_enabled = True
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                def forward(self, x):
         | 
| 220 | 
            +
                    B, C, T = x.shape
         | 
| 221 | 
            +
                    kernel_size = self.conv.conv.kernel_size[0]
         | 
| 222 | 
            +
                    stride = self.conv.conv.stride[0]
         | 
| 223 | 
            +
                    dilation = self.conv.conv.dilation[0]
         | 
| 224 | 
            +
                    kernel_size = (kernel_size - 1) * dilation + 1  # effective kernel size with dilations
         | 
| 225 | 
            +
                    padding_total = kernel_size - stride
         | 
| 226 | 
            +
                    extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    if self.causal:
         | 
| 229 | 
            +
                        # Left padding for causal
         | 
| 230 | 
            +
                        if self.cache_enabled and self.cache is not None:
         | 
| 231 | 
            +
                            # Concatenate the cache (previous inputs) with the new input for streaming
         | 
| 232 | 
            +
                            x = torch.cat([self.cache, x], dim=2)
         | 
| 233 | 
            +
                        else:
         | 
| 234 | 
            +
                            x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
         | 
| 235 | 
            +
                    else:
         | 
| 236 | 
            +
                        # Asymmetric padding required for odd strides
         | 
| 237 | 
            +
                        padding_right = padding_total // 2
         | 
| 238 | 
            +
                        padding_left = padding_total - padding_right
         | 
| 239 | 
            +
                        x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    # Store the most recent input frames for future cache use
         | 
| 242 | 
            +
                    if self.cache_enabled:
         | 
| 243 | 
            +
                        if self.cache is None:
         | 
| 244 | 
            +
                            # Initialize cache with zeros (at the start of streaming)
         | 
| 245 | 
            +
                            self.cache = torch.zeros(B, C, kernel_size - 1, device=x.device)
         | 
| 246 | 
            +
                        # Update the cache by storing the latest input frames
         | 
| 247 | 
            +
                        if kernel_size > 1:
         | 
| 248 | 
            +
                            self.cache = x[:, :, -kernel_size + 1:].detach()  # Only store the necessary frames
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    return self.conv(x)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
             | 
| 253 | 
            +
             | 
| 254 | 
            +
            class SConvTranspose1d(nn.Module):
         | 
| 255 | 
            +
                """ConvTranspose1d with some builtin handling of asymmetric or causal padding
         | 
| 256 | 
            +
                and normalization.
         | 
| 257 | 
            +
                """
         | 
| 258 | 
            +
                def __init__(self, in_channels: int, out_channels: int,
         | 
| 259 | 
            +
                             kernel_size: int, stride: int = 1, causal: bool = False,
         | 
| 260 | 
            +
                             norm: str = 'none', trim_right_ratio: float = 1.,
         | 
| 261 | 
            +
                             norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
         | 
| 262 | 
            +
                    super().__init__()
         | 
| 263 | 
            +
                    self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
         | 
| 264 | 
            +
                                                      causal=causal, norm=norm, norm_kwargs=norm_kwargs)
         | 
| 265 | 
            +
                    self.causal = causal
         | 
| 266 | 
            +
                    self.trim_right_ratio = trim_right_ratio
         | 
| 267 | 
            +
                    assert self.causal or self.trim_right_ratio == 1., \
         | 
| 268 | 
            +
                        "`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
         | 
| 269 | 
            +
                    assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                def forward(self, x):
         | 
| 272 | 
            +
                    kernel_size = self.convtr.convtr.kernel_size[0]
         | 
| 273 | 
            +
                    stride = self.convtr.convtr.stride[0]
         | 
| 274 | 
            +
                    padding_total = kernel_size - stride
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    y = self.convtr(x)
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
         | 
| 279 | 
            +
                    # removed at the very end, when keeping only the right length for the output,
         | 
| 280 | 
            +
                    # as removing it here would require also passing the length at the matching layer
         | 
| 281 | 
            +
                    # in the encoder.
         | 
| 282 | 
            +
                    if self.causal:
         | 
| 283 | 
            +
                        # Trim the padding on the right according to the specified ratio
         | 
| 284 | 
            +
                        # if trim_right_ratio = 1.0, trim everything from right
         | 
| 285 | 
            +
                        padding_right = math.ceil(padding_total * self.trim_right_ratio)
         | 
| 286 | 
            +
                        padding_left = padding_total - padding_right
         | 
| 287 | 
            +
                        y = unpad1d(y, (padding_left, padding_right))
         | 
| 288 | 
            +
                    else:
         | 
| 289 | 
            +
                        # Asymmetric padding required for odd strides
         | 
| 290 | 
            +
                        padding_right = padding_total // 2
         | 
| 291 | 
            +
                        padding_left = padding_total - padding_right
         | 
| 292 | 
            +
                        y = unpad1d(y, (padding_left, padding_right))
         | 
| 293 | 
            +
                    return y
         | 
| 294 | 
            +
             | 
| 295 | 
            +
            class SLSTM(nn.Module):
         | 
| 296 | 
            +
                """
         | 
| 297 | 
            +
                LSTM without worrying about the hidden state, nor the layout of the data.
         | 
| 298 | 
            +
                Expects input as convolutional layout.
         | 
| 299 | 
            +
                """
         | 
| 300 | 
            +
                def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
         | 
| 301 | 
            +
                    super().__init__()
         | 
| 302 | 
            +
                    self.skip = skip
         | 
| 303 | 
            +
                    self.lstm = nn.LSTM(dimension, dimension, num_layers)
         | 
| 304 | 
            +
                    self.hidden = None
         | 
| 305 | 
            +
                    self.cache_enabled = False
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def forward(self, x):
         | 
| 308 | 
            +
                    x = x.permute(2, 0, 1)
         | 
| 309 | 
            +
                    if self.training or not self.cache_enabled:
         | 
| 310 | 
            +
                        y, _ = self.lstm(x)
         | 
| 311 | 
            +
                    else:
         | 
| 312 | 
            +
                        y, self.hidden = self.lstm(x, self.hidden)
         | 
| 313 | 
            +
                    if self.skip:
         | 
| 314 | 
            +
                        y = y + x
         | 
| 315 | 
            +
                    y = y.permute(1, 2, 0)
         | 
| 316 | 
            +
                    return y
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def reset_cache(self):
         | 
| 319 | 
            +
                    self.hidden = None
         | 
| 320 | 
            +
                    self.cache_enabled = True
         | 
    	
        dac/nn/__init__.py
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from . import layers
         | 
| 2 | 
            +
            from . import loss
         | 
| 3 | 
            +
            from . import quantize
         | 
    	
        dac/nn/layers.py
    ADDED
    
    | @@ -0,0 +1,33 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import numpy as np
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import torch.nn as nn
         | 
| 4 | 
            +
            import torch.nn.functional as F
         | 
| 5 | 
            +
            from einops import rearrange
         | 
| 6 | 
            +
            from torch.nn.utils import weight_norm
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            def WNConv1d(*args, **kwargs):
         | 
| 10 | 
            +
                return weight_norm(nn.Conv1d(*args, **kwargs))
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def WNConvTranspose1d(*args, **kwargs):
         | 
| 14 | 
            +
                return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            # Scripting this brings model speed up 1.4x
         | 
| 18 | 
            +
            @torch.jit.script
         | 
| 19 | 
            +
            def snake(x, alpha):
         | 
| 20 | 
            +
                shape = x.shape
         | 
| 21 | 
            +
                x = x.reshape(shape[0], shape[1], -1)
         | 
| 22 | 
            +
                x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
         | 
| 23 | 
            +
                x = x.reshape(shape)
         | 
| 24 | 
            +
                return x
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class Snake1d(nn.Module):
         | 
| 28 | 
            +
                def __init__(self, channels):
         | 
| 29 | 
            +
                    super().__init__()
         | 
| 30 | 
            +
                    self.alpha = nn.Parameter(torch.ones(1, channels, 1))
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def forward(self, x):
         | 
| 33 | 
            +
                    return snake(x, self.alpha)
         | 
    	
        dac/nn/loss.py
    ADDED
    
    | @@ -0,0 +1,368 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import typing
         | 
| 2 | 
            +
            from typing import List
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
            from audiotools import AudioSignal
         | 
| 7 | 
            +
            from audiotools import STFTParams
         | 
| 8 | 
            +
            from torch import nn
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            class L1Loss(nn.L1Loss):
         | 
| 12 | 
            +
                """L1 Loss between AudioSignals. Defaults
         | 
| 13 | 
            +
                to comparing ``audio_data``, but any
         | 
| 14 | 
            +
                attribute of an AudioSignal can be used.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                Parameters
         | 
| 17 | 
            +
                ----------
         | 
| 18 | 
            +
                attribute : str, optional
         | 
| 19 | 
            +
                    Attribute of signal to compare, defaults to ``audio_data``.
         | 
| 20 | 
            +
                weight : float, optional
         | 
| 21 | 
            +
                    Weight of this loss, defaults to 1.0.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
         | 
| 24 | 
            +
                """
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
         | 
| 27 | 
            +
                    self.attribute = attribute
         | 
| 28 | 
            +
                    self.weight = weight
         | 
| 29 | 
            +
                    super().__init__(**kwargs)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                def forward(self, x: AudioSignal, y: AudioSignal):
         | 
| 32 | 
            +
                    """
         | 
| 33 | 
            +
                    Parameters
         | 
| 34 | 
            +
                    ----------
         | 
| 35 | 
            +
                    x : AudioSignal
         | 
| 36 | 
            +
                        Estimate AudioSignal
         | 
| 37 | 
            +
                    y : AudioSignal
         | 
| 38 | 
            +
                        Reference AudioSignal
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    Returns
         | 
| 41 | 
            +
                    -------
         | 
| 42 | 
            +
                    torch.Tensor
         | 
| 43 | 
            +
                        L1 loss between AudioSignal attributes.
         | 
| 44 | 
            +
                    """
         | 
| 45 | 
            +
                    if isinstance(x, AudioSignal):
         | 
| 46 | 
            +
                        x = getattr(x, self.attribute)
         | 
| 47 | 
            +
                        y = getattr(y, self.attribute)
         | 
| 48 | 
            +
                    return super().forward(x, y)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            class SISDRLoss(nn.Module):
         | 
| 52 | 
            +
                """
         | 
| 53 | 
            +
                Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
         | 
| 54 | 
            +
                of estimated and reference audio signals or aligned features.
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                Parameters
         | 
| 57 | 
            +
                ----------
         | 
| 58 | 
            +
                scaling : int, optional
         | 
| 59 | 
            +
                    Whether to use scale-invariant (True) or
         | 
| 60 | 
            +
                    signal-to-noise ratio (False), by default True
         | 
| 61 | 
            +
                reduction : str, optional
         | 
| 62 | 
            +
                    How to reduce across the batch (either 'mean',
         | 
| 63 | 
            +
                    'sum', or none).], by default ' mean'
         | 
| 64 | 
            +
                zero_mean : int, optional
         | 
| 65 | 
            +
                    Zero mean the references and estimates before
         | 
| 66 | 
            +
                    computing the loss, by default True
         | 
| 67 | 
            +
                clip_min : int, optional
         | 
| 68 | 
            +
                    The minimum possible loss value. Helps network
         | 
| 69 | 
            +
                    to not focus on making already good examples better, by default None
         | 
| 70 | 
            +
                weight : float, optional
         | 
| 71 | 
            +
                    Weight of this loss, defaults to 1.0.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
         | 
| 74 | 
            +
                """
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                def __init__(
         | 
| 77 | 
            +
                    self,
         | 
| 78 | 
            +
                    scaling: int = True,
         | 
| 79 | 
            +
                    reduction: str = "mean",
         | 
| 80 | 
            +
                    zero_mean: int = True,
         | 
| 81 | 
            +
                    clip_min: int = None,
         | 
| 82 | 
            +
                    weight: float = 1.0,
         | 
| 83 | 
            +
                ):
         | 
| 84 | 
            +
                    self.scaling = scaling
         | 
| 85 | 
            +
                    self.reduction = reduction
         | 
| 86 | 
            +
                    self.zero_mean = zero_mean
         | 
| 87 | 
            +
                    self.clip_min = clip_min
         | 
| 88 | 
            +
                    self.weight = weight
         | 
| 89 | 
            +
                    super().__init__()
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def forward(self, x: AudioSignal, y: AudioSignal):
         | 
| 92 | 
            +
                    eps = 1e-8
         | 
| 93 | 
            +
                    # nb, nc, nt
         | 
| 94 | 
            +
                    if isinstance(x, AudioSignal):
         | 
| 95 | 
            +
                        references = x.audio_data
         | 
| 96 | 
            +
                        estimates = y.audio_data
         | 
| 97 | 
            +
                    else:
         | 
| 98 | 
            +
                        references = x
         | 
| 99 | 
            +
                        estimates = y
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    nb = references.shape[0]
         | 
| 102 | 
            +
                    references = references.reshape(nb, 1, -1).permute(0, 2, 1)
         | 
| 103 | 
            +
                    estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    # samples now on axis 1
         | 
| 106 | 
            +
                    if self.zero_mean:
         | 
| 107 | 
            +
                        mean_reference = references.mean(dim=1, keepdim=True)
         | 
| 108 | 
            +
                        mean_estimate = estimates.mean(dim=1, keepdim=True)
         | 
| 109 | 
            +
                    else:
         | 
| 110 | 
            +
                        mean_reference = 0
         | 
| 111 | 
            +
                        mean_estimate = 0
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    _references = references - mean_reference
         | 
| 114 | 
            +
                    _estimates = estimates - mean_estimate
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    references_projection = (_references**2).sum(dim=-2) + eps
         | 
| 117 | 
            +
                    references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    scale = (
         | 
| 120 | 
            +
                        (references_on_estimates / references_projection).unsqueeze(1)
         | 
| 121 | 
            +
                        if self.scaling
         | 
| 122 | 
            +
                        else 1
         | 
| 123 | 
            +
                    )
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    e_true = scale * _references
         | 
| 126 | 
            +
                    e_res = _estimates - e_true
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    signal = (e_true**2).sum(dim=1)
         | 
| 129 | 
            +
                    noise = (e_res**2).sum(dim=1)
         | 
| 130 | 
            +
                    sdr = -10 * torch.log10(signal / noise + eps)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    if self.clip_min is not None:
         | 
| 133 | 
            +
                        sdr = torch.clamp(sdr, min=self.clip_min)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    if self.reduction == "mean":
         | 
| 136 | 
            +
                        sdr = sdr.mean()
         | 
| 137 | 
            +
                    elif self.reduction == "sum":
         | 
| 138 | 
            +
                        sdr = sdr.sum()
         | 
| 139 | 
            +
                    return sdr
         | 
| 140 | 
            +
             | 
| 141 | 
            +
             | 
| 142 | 
            +
            class MultiScaleSTFTLoss(nn.Module):
         | 
| 143 | 
            +
                """Computes the multi-scale STFT loss from [1].
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                Parameters
         | 
| 146 | 
            +
                ----------
         | 
| 147 | 
            +
                window_lengths : List[int], optional
         | 
| 148 | 
            +
                    Length of each window of each STFT, by default [2048, 512]
         | 
| 149 | 
            +
                loss_fn : typing.Callable, optional
         | 
| 150 | 
            +
                    How to compare each loss, by default nn.L1Loss()
         | 
| 151 | 
            +
                clamp_eps : float, optional
         | 
| 152 | 
            +
                    Clamp on the log magnitude, below, by default 1e-5
         | 
| 153 | 
            +
                mag_weight : float, optional
         | 
| 154 | 
            +
                    Weight of raw magnitude portion of loss, by default 1.0
         | 
| 155 | 
            +
                log_weight : float, optional
         | 
| 156 | 
            +
                    Weight of log magnitude portion of loss, by default 1.0
         | 
| 157 | 
            +
                pow : float, optional
         | 
| 158 | 
            +
                    Power to raise magnitude to before taking log, by default 2.0
         | 
| 159 | 
            +
                weight : float, optional
         | 
| 160 | 
            +
                    Weight of this loss, by default 1.0
         | 
| 161 | 
            +
                match_stride : bool, optional
         | 
| 162 | 
            +
                    Whether to match the stride of convolutional layers, by default False
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                References
         | 
| 165 | 
            +
                ----------
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                1.  Engel, Jesse, Chenjie Gu, and Adam Roberts.
         | 
| 168 | 
            +
                    "DDSP: Differentiable Digital Signal Processing."
         | 
| 169 | 
            +
                    International Conference on Learning Representations. 2019.
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
         | 
| 172 | 
            +
                """
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def __init__(
         | 
| 175 | 
            +
                    self,
         | 
| 176 | 
            +
                    window_lengths: List[int] = [2048, 512],
         | 
| 177 | 
            +
                    loss_fn: typing.Callable = nn.L1Loss(),
         | 
| 178 | 
            +
                    clamp_eps: float = 1e-5,
         | 
| 179 | 
            +
                    mag_weight: float = 1.0,
         | 
| 180 | 
            +
                    log_weight: float = 1.0,
         | 
| 181 | 
            +
                    pow: float = 2.0,
         | 
| 182 | 
            +
                    weight: float = 1.0,
         | 
| 183 | 
            +
                    match_stride: bool = False,
         | 
| 184 | 
            +
                    window_type: str = None,
         | 
| 185 | 
            +
                ):
         | 
| 186 | 
            +
                    super().__init__()
         | 
| 187 | 
            +
                    self.stft_params = [
         | 
| 188 | 
            +
                        STFTParams(
         | 
| 189 | 
            +
                            window_length=w,
         | 
| 190 | 
            +
                            hop_length=w // 4,
         | 
| 191 | 
            +
                            match_stride=match_stride,
         | 
| 192 | 
            +
                            window_type=window_type,
         | 
| 193 | 
            +
                        )
         | 
| 194 | 
            +
                        for w in window_lengths
         | 
| 195 | 
            +
                    ]
         | 
| 196 | 
            +
                    self.loss_fn = loss_fn
         | 
| 197 | 
            +
                    self.log_weight = log_weight
         | 
| 198 | 
            +
                    self.mag_weight = mag_weight
         | 
| 199 | 
            +
                    self.clamp_eps = clamp_eps
         | 
| 200 | 
            +
                    self.weight = weight
         | 
| 201 | 
            +
                    self.pow = pow
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                def forward(self, x: AudioSignal, y: AudioSignal):
         | 
| 204 | 
            +
                    """Computes multi-scale STFT between an estimate and a reference
         | 
| 205 | 
            +
                    signal.
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    Parameters
         | 
| 208 | 
            +
                    ----------
         | 
| 209 | 
            +
                    x : AudioSignal
         | 
| 210 | 
            +
                        Estimate signal
         | 
| 211 | 
            +
                    y : AudioSignal
         | 
| 212 | 
            +
                        Reference signal
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    Returns
         | 
| 215 | 
            +
                    -------
         | 
| 216 | 
            +
                    torch.Tensor
         | 
| 217 | 
            +
                        Multi-scale STFT loss.
         | 
| 218 | 
            +
                    """
         | 
| 219 | 
            +
                    loss = 0.0
         | 
| 220 | 
            +
                    for s in self.stft_params:
         | 
| 221 | 
            +
                        x.stft(s.window_length, s.hop_length, s.window_type)
         | 
| 222 | 
            +
                        y.stft(s.window_length, s.hop_length, s.window_type)
         | 
| 223 | 
            +
                        loss += self.log_weight * self.loss_fn(
         | 
| 224 | 
            +
                            x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
         | 
| 225 | 
            +
                            y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
         | 
| 226 | 
            +
                        )
         | 
| 227 | 
            +
                        loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
         | 
| 228 | 
            +
                    return loss
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            class MelSpectrogramLoss(nn.Module):
         | 
| 232 | 
            +
                """Compute distance between mel spectrograms. Can be used
         | 
| 233 | 
            +
                in a multi-scale way.
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                Parameters
         | 
| 236 | 
            +
                ----------
         | 
| 237 | 
            +
                n_mels : List[int]
         | 
| 238 | 
            +
                    Number of mels per STFT, by default [150, 80],
         | 
| 239 | 
            +
                window_lengths : List[int], optional
         | 
| 240 | 
            +
                    Length of each window of each STFT, by default [2048, 512]
         | 
| 241 | 
            +
                loss_fn : typing.Callable, optional
         | 
| 242 | 
            +
                    How to compare each loss, by default nn.L1Loss()
         | 
| 243 | 
            +
                clamp_eps : float, optional
         | 
| 244 | 
            +
                    Clamp on the log magnitude, below, by default 1e-5
         | 
| 245 | 
            +
                mag_weight : float, optional
         | 
| 246 | 
            +
                    Weight of raw magnitude portion of loss, by default 1.0
         | 
| 247 | 
            +
                log_weight : float, optional
         | 
| 248 | 
            +
                    Weight of log magnitude portion of loss, by default 1.0
         | 
| 249 | 
            +
                pow : float, optional
         | 
| 250 | 
            +
                    Power to raise magnitude to before taking log, by default 2.0
         | 
| 251 | 
            +
                weight : float, optional
         | 
| 252 | 
            +
                    Weight of this loss, by default 1.0
         | 
| 253 | 
            +
                match_stride : bool, optional
         | 
| 254 | 
            +
                    Whether to match the stride of convolutional layers, by default False
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
         | 
| 257 | 
            +
                """
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def __init__(
         | 
| 260 | 
            +
                    self,
         | 
| 261 | 
            +
                    n_mels: List[int] = [150, 80],
         | 
| 262 | 
            +
                    window_lengths: List[int] = [2048, 512],
         | 
| 263 | 
            +
                    loss_fn: typing.Callable = nn.L1Loss(),
         | 
| 264 | 
            +
                    clamp_eps: float = 1e-5,
         | 
| 265 | 
            +
                    mag_weight: float = 1.0,
         | 
| 266 | 
            +
                    log_weight: float = 1.0,
         | 
| 267 | 
            +
                    pow: float = 2.0,
         | 
| 268 | 
            +
                    weight: float = 1.0,
         | 
| 269 | 
            +
                    match_stride: bool = False,
         | 
| 270 | 
            +
                    mel_fmin: List[float] = [0.0, 0.0],
         | 
| 271 | 
            +
                    mel_fmax: List[float] = [None, None],
         | 
| 272 | 
            +
                    window_type: str = None,
         | 
| 273 | 
            +
                ):
         | 
| 274 | 
            +
                    super().__init__()
         | 
| 275 | 
            +
                    self.stft_params = [
         | 
| 276 | 
            +
                        STFTParams(
         | 
| 277 | 
            +
                            window_length=w,
         | 
| 278 | 
            +
                            hop_length=w // 4,
         | 
| 279 | 
            +
                            match_stride=match_stride,
         | 
| 280 | 
            +
                            window_type=window_type,
         | 
| 281 | 
            +
                        )
         | 
| 282 | 
            +
                        for w in window_lengths
         | 
| 283 | 
            +
                    ]
         | 
| 284 | 
            +
                    self.n_mels = n_mels
         | 
| 285 | 
            +
                    self.loss_fn = loss_fn
         | 
| 286 | 
            +
                    self.clamp_eps = clamp_eps
         | 
| 287 | 
            +
                    self.log_weight = log_weight
         | 
| 288 | 
            +
                    self.mag_weight = mag_weight
         | 
| 289 | 
            +
                    self.weight = weight
         | 
| 290 | 
            +
                    self.mel_fmin = mel_fmin
         | 
| 291 | 
            +
                    self.mel_fmax = mel_fmax
         | 
| 292 | 
            +
                    self.pow = pow
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                def forward(self, x: AudioSignal, y: AudioSignal):
         | 
| 295 | 
            +
                    """Computes mel loss between an estimate and a reference
         | 
| 296 | 
            +
                    signal.
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    Parameters
         | 
| 299 | 
            +
                    ----------
         | 
| 300 | 
            +
                    x : AudioSignal
         | 
| 301 | 
            +
                        Estimate signal
         | 
| 302 | 
            +
                    y : AudioSignal
         | 
| 303 | 
            +
                        Reference signal
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                    Returns
         | 
| 306 | 
            +
                    -------
         | 
| 307 | 
            +
                    torch.Tensor
         | 
| 308 | 
            +
                        Mel loss.
         | 
| 309 | 
            +
                    """
         | 
| 310 | 
            +
                    loss = 0.0
         | 
| 311 | 
            +
                    for n_mels, fmin, fmax, s in zip(
         | 
| 312 | 
            +
                        self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
         | 
| 313 | 
            +
                    ):
         | 
| 314 | 
            +
                        kwargs = {
         | 
| 315 | 
            +
                            "window_length": s.window_length,
         | 
| 316 | 
            +
                            "hop_length": s.hop_length,
         | 
| 317 | 
            +
                            "window_type": s.window_type,
         | 
| 318 | 
            +
                        }
         | 
| 319 | 
            +
                        x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
         | 
| 320 | 
            +
                        y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                        loss += self.log_weight * self.loss_fn(
         | 
| 323 | 
            +
                            x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
         | 
| 324 | 
            +
                            y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
         | 
| 325 | 
            +
                        )
         | 
| 326 | 
            +
                        loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
         | 
| 327 | 
            +
                    return loss
         | 
| 328 | 
            +
             | 
| 329 | 
            +
             | 
| 330 | 
            +
            class GANLoss(nn.Module):
         | 
| 331 | 
            +
                """
         | 
| 332 | 
            +
                Computes a discriminator loss, given a discriminator on
         | 
| 333 | 
            +
                generated waveforms/spectrograms compared to ground truth
         | 
| 334 | 
            +
                waveforms/spectrograms. Computes the loss for both the
         | 
| 335 | 
            +
                discriminator and the generator in separate functions.
         | 
| 336 | 
            +
                """
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                def __init__(self, discriminator):
         | 
| 339 | 
            +
                    super().__init__()
         | 
| 340 | 
            +
                    self.discriminator = discriminator
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                def forward(self, fake, real):
         | 
| 343 | 
            +
                    d_fake = self.discriminator(fake.audio_data)
         | 
| 344 | 
            +
                    d_real = self.discriminator(real.audio_data)
         | 
| 345 | 
            +
                    return d_fake, d_real
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                def discriminator_loss(self, fake, real):
         | 
| 348 | 
            +
                    d_fake, d_real = self.forward(fake.clone().detach(), real)
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    loss_d = 0
         | 
| 351 | 
            +
                    for x_fake, x_real in zip(d_fake, d_real):
         | 
| 352 | 
            +
                        loss_d += torch.mean(x_fake[-1] ** 2)
         | 
| 353 | 
            +
                        loss_d += torch.mean((1 - x_real[-1]) ** 2)
         | 
| 354 | 
            +
                    return loss_d
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                def generator_loss(self, fake, real):
         | 
| 357 | 
            +
                    d_fake, d_real = self.forward(fake, real)
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    loss_g = 0
         | 
| 360 | 
            +
                    for x_fake in d_fake:
         | 
| 361 | 
            +
                        loss_g += torch.mean((1 - x_fake[-1]) ** 2)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    loss_feature = 0
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    for i in range(len(d_fake)):
         | 
| 366 | 
            +
                        for j in range(len(d_fake[i]) - 1):
         | 
| 367 | 
            +
                            loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
         | 
| 368 | 
            +
                    return loss_g, loss_feature
         | 
    	
        dac/nn/quantize.py
    ADDED
    
    | @@ -0,0 +1,339 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Union
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torch.nn as nn
         | 
| 6 | 
            +
            import torch.nn.functional as F
         | 
| 7 | 
            +
            from einops import rearrange
         | 
| 8 | 
            +
            from torch.nn.utils import weight_norm
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from dac.nn.layers import WNConv1d
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            class VectorQuantizeLegacy(nn.Module):
         | 
| 13 | 
            +
                """
         | 
| 14 | 
            +
                Implementation of VQ similar to Karpathy's repo:
         | 
| 15 | 
            +
                https://github.com/karpathy/deep-vector-quantization
         | 
| 16 | 
            +
                removed in-out projection
         | 
| 17 | 
            +
                """
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def __init__(self, input_dim: int, codebook_size: int):
         | 
| 20 | 
            +
                    super().__init__()
         | 
| 21 | 
            +
                    self.codebook_size = codebook_size
         | 
| 22 | 
            +
                    self.codebook = nn.Embedding(codebook_size, input_dim)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                def forward(self, z, z_mask=None):
         | 
| 25 | 
            +
                    """Quantized the input tensor using a fixed codebook and returns
         | 
| 26 | 
            +
                    the corresponding codebook vectors
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                    Parameters
         | 
| 29 | 
            +
                    ----------
         | 
| 30 | 
            +
                    z : Tensor[B x D x T]
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                    Returns
         | 
| 33 | 
            +
                    -------
         | 
| 34 | 
            +
                    Tensor[B x D x T]
         | 
| 35 | 
            +
                        Quantized continuous representation of input
         | 
| 36 | 
            +
                    Tensor[1]
         | 
| 37 | 
            +
                        Commitment loss to train encoder to predict vectors closer to codebook
         | 
| 38 | 
            +
                        entries
         | 
| 39 | 
            +
                    Tensor[1]
         | 
| 40 | 
            +
                        Codebook loss to update the codebook
         | 
| 41 | 
            +
                    Tensor[B x T]
         | 
| 42 | 
            +
                        Codebook indices (quantized discrete representation of input)
         | 
| 43 | 
            +
                    Tensor[B x D x T]
         | 
| 44 | 
            +
                        Projected latents (continuous representation of input before quantization)
         | 
| 45 | 
            +
                    """
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    z_e = z
         | 
| 48 | 
            +
                    z_q, indices = self.decode_latents(z)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    if z_mask is not None:
         | 
| 51 | 
            +
                        commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
         | 
| 52 | 
            +
                        codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
         | 
| 53 | 
            +
                    else:
         | 
| 54 | 
            +
                        commitment_loss = F.mse_loss(z_e, z_q.detach())
         | 
| 55 | 
            +
                        codebook_loss = F.mse_loss(z_q, z_e.detach())
         | 
| 56 | 
            +
                    z_q = (
         | 
| 57 | 
            +
                        z_e + (z_q - z_e).detach()
         | 
| 58 | 
            +
                    )  # noop in forward pass, straight-through gradient estimator in backward pass
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    return z_q, indices, z_e, commitment_loss, codebook_loss
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def embed_code(self, embed_id):
         | 
| 63 | 
            +
                    return F.embedding(embed_id, self.codebook.weight)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                def decode_code(self, embed_id):
         | 
| 66 | 
            +
                    return self.embed_code(embed_id).transpose(1, 2)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def decode_latents(self, latents):
         | 
| 69 | 
            +
                    encodings = rearrange(latents, "b d t -> (b t) d")
         | 
| 70 | 
            +
                    codebook = self.codebook.weight  # codebook: (N x D)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    # L2 normalize encodings and codebook (ViT-VQGAN)
         | 
| 73 | 
            +
                    encodings = F.normalize(encodings)
         | 
| 74 | 
            +
                    codebook = F.normalize(codebook)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    # Compute euclidean distance with codebook
         | 
| 77 | 
            +
                    dist = (
         | 
| 78 | 
            +
                        encodings.pow(2).sum(1, keepdim=True)
         | 
| 79 | 
            +
                        - 2 * encodings @ codebook.t()
         | 
| 80 | 
            +
                        + codebook.pow(2).sum(1, keepdim=True).t()
         | 
| 81 | 
            +
                    )
         | 
| 82 | 
            +
                    indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
         | 
| 83 | 
            +
                    z_q = self.decode_code(indices)
         | 
| 84 | 
            +
                    return z_q, indices
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            class VectorQuantize(nn.Module):
         | 
| 87 | 
            +
                """
         | 
| 88 | 
            +
                Implementation of VQ similar to Karpathy's repo:
         | 
| 89 | 
            +
                https://github.com/karpathy/deep-vector-quantization
         | 
| 90 | 
            +
                Additionally uses following tricks from Improved VQGAN
         | 
| 91 | 
            +
                (https://arxiv.org/pdf/2110.04627.pdf):
         | 
| 92 | 
            +
                    1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
         | 
| 93 | 
            +
                        for improved codebook usage
         | 
| 94 | 
            +
                    2. l2-normalized codes: Converts euclidean distance to cosine similarity which
         | 
| 95 | 
            +
                        improves training stability
         | 
| 96 | 
            +
                """
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
         | 
| 99 | 
            +
                    super().__init__()
         | 
| 100 | 
            +
                    self.codebook_size = codebook_size
         | 
| 101 | 
            +
                    self.codebook_dim = codebook_dim
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
         | 
| 104 | 
            +
                    self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
         | 
| 105 | 
            +
                    self.codebook = nn.Embedding(codebook_size, codebook_dim)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def forward(self, z, z_mask=None):
         | 
| 108 | 
            +
                    """Quantized the input tensor using a fixed codebook and returns
         | 
| 109 | 
            +
                    the corresponding codebook vectors
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    Parameters
         | 
| 112 | 
            +
                    ----------
         | 
| 113 | 
            +
                    z : Tensor[B x D x T]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    Returns
         | 
| 116 | 
            +
                    -------
         | 
| 117 | 
            +
                    Tensor[B x D x T]
         | 
| 118 | 
            +
                        Quantized continuous representation of input
         | 
| 119 | 
            +
                    Tensor[1]
         | 
| 120 | 
            +
                        Commitment loss to train encoder to predict vectors closer to codebook
         | 
| 121 | 
            +
                        entries
         | 
| 122 | 
            +
                    Tensor[1]
         | 
| 123 | 
            +
                        Codebook loss to update the codebook
         | 
| 124 | 
            +
                    Tensor[B x T]
         | 
| 125 | 
            +
                        Codebook indices (quantized discrete representation of input)
         | 
| 126 | 
            +
                    Tensor[B x D x T]
         | 
| 127 | 
            +
                        Projected latents (continuous representation of input before quantization)
         | 
| 128 | 
            +
                    """
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    # Factorized codes (ViT-VQGAN) Project input into low-dimensional space
         | 
| 131 | 
            +
                    z_e = self.in_proj(z)  # z_e : (B x D x T)
         | 
| 132 | 
            +
                    z_q, indices = self.decode_latents(z_e)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    if z_mask is not None:
         | 
| 135 | 
            +
                        commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
         | 
| 136 | 
            +
                        codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
         | 
| 137 | 
            +
                    else:
         | 
| 138 | 
            +
                        commitment_loss = F.mse_loss(z_e, z_q.detach())
         | 
| 139 | 
            +
                        codebook_loss = F.mse_loss(z_q, z_e.detach())
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    z_q = (
         | 
| 142 | 
            +
                        z_e + (z_q - z_e).detach()
         | 
| 143 | 
            +
                    )  # noop in forward pass, straight-through gradient estimator in backward pass
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    z_q = self.out_proj(z_q)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    return z_q, commitment_loss, codebook_loss, indices, z_e
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                def embed_code(self, embed_id):
         | 
| 150 | 
            +
                    return F.embedding(embed_id, self.codebook.weight)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def decode_code(self, embed_id):
         | 
| 153 | 
            +
                    return self.embed_code(embed_id).transpose(1, 2)
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                def decode_latents(self, latents):
         | 
| 156 | 
            +
                    encodings = rearrange(latents, "b d t -> (b t) d")
         | 
| 157 | 
            +
                    codebook = self.codebook.weight  # codebook: (N x D)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    # L2 normalize encodings and codebook (ViT-VQGAN)
         | 
| 160 | 
            +
                    encodings = F.normalize(encodings)
         | 
| 161 | 
            +
                    codebook = F.normalize(codebook)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    # Compute euclidean distance with codebook
         | 
| 164 | 
            +
                    dist = (
         | 
| 165 | 
            +
                        encodings.pow(2).sum(1, keepdim=True)
         | 
| 166 | 
            +
                        - 2 * encodings @ codebook.t()
         | 
| 167 | 
            +
                        + codebook.pow(2).sum(1, keepdim=True).t()
         | 
| 168 | 
            +
                    )
         | 
| 169 | 
            +
                    indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
         | 
| 170 | 
            +
                    z_q = self.decode_code(indices)
         | 
| 171 | 
            +
                    return z_q, indices
         | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
            class ResidualVectorQuantize(nn.Module):
         | 
| 175 | 
            +
                """
         | 
| 176 | 
            +
                Introduced in SoundStream: An end2end neural audio codec
         | 
| 177 | 
            +
                https://arxiv.org/abs/2107.03312
         | 
| 178 | 
            +
                """
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                def __init__(
         | 
| 181 | 
            +
                    self,
         | 
| 182 | 
            +
                    input_dim: int = 512,
         | 
| 183 | 
            +
                    n_codebooks: int = 9,
         | 
| 184 | 
            +
                    codebook_size: int = 1024,
         | 
| 185 | 
            +
                    codebook_dim: Union[int, list] = 8,
         | 
| 186 | 
            +
                    quantizer_dropout: float = 0.0,
         | 
| 187 | 
            +
                ):
         | 
| 188 | 
            +
                    super().__init__()
         | 
| 189 | 
            +
                    if isinstance(codebook_dim, int):
         | 
| 190 | 
            +
                        codebook_dim = [codebook_dim for _ in range(n_codebooks)]
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    self.n_codebooks = n_codebooks
         | 
| 193 | 
            +
                    self.codebook_dim = codebook_dim
         | 
| 194 | 
            +
                    self.codebook_size = codebook_size
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    self.quantizers = nn.ModuleList(
         | 
| 197 | 
            +
                        [
         | 
| 198 | 
            +
                            VectorQuantize(input_dim, codebook_size, codebook_dim[i])
         | 
| 199 | 
            +
                            for i in range(n_codebooks)
         | 
| 200 | 
            +
                        ]
         | 
| 201 | 
            +
                    )
         | 
| 202 | 
            +
                    self.quantizer_dropout = quantizer_dropout
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def forward(self, z, n_quantizers: int = None):
         | 
| 205 | 
            +
                    """Quantized the input tensor using a fixed set of `n` codebooks and returns
         | 
| 206 | 
            +
                    the corresponding codebook vectors
         | 
| 207 | 
            +
                    Parameters
         | 
| 208 | 
            +
                    ----------
         | 
| 209 | 
            +
                    z : Tensor[B x D x T]
         | 
| 210 | 
            +
                    n_quantizers : int, optional
         | 
| 211 | 
            +
                        No. of quantizers to use
         | 
| 212 | 
            +
                        (n_quantizers < self.n_codebooks ex: for quantizer dropout)
         | 
| 213 | 
            +
                        Note: if `self.quantizer_dropout` is True, this argument is ignored
         | 
| 214 | 
            +
                            when in training mode, and a random number of quantizers is used.
         | 
| 215 | 
            +
                    Returns
         | 
| 216 | 
            +
                    -------
         | 
| 217 | 
            +
                    dict
         | 
| 218 | 
            +
                        A dictionary with the following keys:
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                        "z" : Tensor[B x D x T]
         | 
| 221 | 
            +
                            Quantized continuous representation of input
         | 
| 222 | 
            +
                        "codes" : Tensor[B x N x T]
         | 
| 223 | 
            +
                            Codebook indices for each codebook
         | 
| 224 | 
            +
                            (quantized discrete representation of input)
         | 
| 225 | 
            +
                        "latents" : Tensor[B x N*D x T]
         | 
| 226 | 
            +
                            Projected latents (continuous representation of input before quantization)
         | 
| 227 | 
            +
                        "vq/commitment_loss" : Tensor[1]
         | 
| 228 | 
            +
                            Commitment loss to train encoder to predict vectors closer to codebook
         | 
| 229 | 
            +
                            entries
         | 
| 230 | 
            +
                        "vq/codebook_loss" : Tensor[1]
         | 
| 231 | 
            +
                            Codebook loss to update the codebook
         | 
| 232 | 
            +
                    """
         | 
| 233 | 
            +
                    z_q = 0
         | 
| 234 | 
            +
                    residual = z
         | 
| 235 | 
            +
                    commitment_loss = 0
         | 
| 236 | 
            +
                    codebook_loss = 0
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    codebook_indices = []
         | 
| 239 | 
            +
                    latents = []
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    if n_quantizers is None:
         | 
| 242 | 
            +
                        n_quantizers = self.n_codebooks
         | 
| 243 | 
            +
                    if self.training:
         | 
| 244 | 
            +
                        n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
         | 
| 245 | 
            +
                        dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
         | 
| 246 | 
            +
                        n_dropout = int(z.shape[0] * self.quantizer_dropout)
         | 
| 247 | 
            +
                        n_quantizers[:n_dropout] = dropout[:n_dropout]
         | 
| 248 | 
            +
                        n_quantizers = n_quantizers.to(z.device)
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    for i, quantizer in enumerate(self.quantizers):
         | 
| 251 | 
            +
                        if self.training is False and i >= n_quantizers:
         | 
| 252 | 
            +
                            break
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                        z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
         | 
| 255 | 
            +
                            residual
         | 
| 256 | 
            +
                        )
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                        # Create mask to apply quantizer dropout
         | 
| 259 | 
            +
                        mask = (
         | 
| 260 | 
            +
                            torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
         | 
| 261 | 
            +
                        )
         | 
| 262 | 
            +
                        z_q = z_q + z_q_i * mask[:, None, None]
         | 
| 263 | 
            +
                        residual = residual - z_q_i
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                        # Sum losses
         | 
| 266 | 
            +
                        commitment_loss += (commitment_loss_i * mask).mean()
         | 
| 267 | 
            +
                        codebook_loss += (codebook_loss_i * mask).mean()
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                        codebook_indices.append(indices_i)
         | 
| 270 | 
            +
                        latents.append(z_e_i)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    codes = torch.stack(codebook_indices, dim=1)
         | 
| 273 | 
            +
                    latents = torch.cat(latents, dim=1)
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    return z_q, codes, latents, commitment_loss, codebook_loss
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def from_codes(self, codes: torch.Tensor):
         | 
| 278 | 
            +
                    """Given the quantized codes, reconstruct the continuous representation
         | 
| 279 | 
            +
                    Parameters
         | 
| 280 | 
            +
                    ----------
         | 
| 281 | 
            +
                    codes : Tensor[B x N x T]
         | 
| 282 | 
            +
                        Quantized discrete representation of input
         | 
| 283 | 
            +
                    Returns
         | 
| 284 | 
            +
                    -------
         | 
| 285 | 
            +
                    Tensor[B x D x T]
         | 
| 286 | 
            +
                        Quantized continuous representation of input
         | 
| 287 | 
            +
                    """
         | 
| 288 | 
            +
                    z_q = 0.0
         | 
| 289 | 
            +
                    z_p = []
         | 
| 290 | 
            +
                    n_codebooks = codes.shape[1]
         | 
| 291 | 
            +
                    for i in range(n_codebooks):
         | 
| 292 | 
            +
                        z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
         | 
| 293 | 
            +
                        z_p.append(z_p_i)
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                        z_q_i = self.quantizers[i].out_proj(z_p_i)
         | 
| 296 | 
            +
                        z_q = z_q + z_q_i
         | 
| 297 | 
            +
                    return z_q, torch.cat(z_p, dim=1), codes
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                def from_latents(self, latents: torch.Tensor):
         | 
| 300 | 
            +
                    """Given the unquantized latents, reconstruct the
         | 
| 301 | 
            +
                    continuous representation after quantization.
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    Parameters
         | 
| 304 | 
            +
                    ----------
         | 
| 305 | 
            +
                    latents : Tensor[B x N x T]
         | 
| 306 | 
            +
                        Continuous representation of input after projection
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    Returns
         | 
| 309 | 
            +
                    -------
         | 
| 310 | 
            +
                    Tensor[B x D x T]
         | 
| 311 | 
            +
                        Quantized representation of full-projected space
         | 
| 312 | 
            +
                    Tensor[B x D x T]
         | 
| 313 | 
            +
                        Quantized representation of latent space
         | 
| 314 | 
            +
                    """
         | 
| 315 | 
            +
                    z_q = 0
         | 
| 316 | 
            +
                    z_p = []
         | 
| 317 | 
            +
                    codes = []
         | 
| 318 | 
            +
                    dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
         | 
| 321 | 
            +
                        0
         | 
| 322 | 
            +
                    ]
         | 
| 323 | 
            +
                    for i in range(n_codebooks):
         | 
| 324 | 
            +
                        j, k = dims[i], dims[i + 1]
         | 
| 325 | 
            +
                        z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
         | 
| 326 | 
            +
                        z_p.append(z_p_i)
         | 
| 327 | 
            +
                        codes.append(codes_i)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                        z_q_i = self.quantizers[i].out_proj(z_p_i)
         | 
| 330 | 
            +
                        z_q = z_q + z_q_i
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
         | 
| 333 | 
            +
             | 
| 334 | 
            +
             | 
| 335 | 
            +
            if __name__ == "__main__":
         | 
| 336 | 
            +
                rvq = ResidualVectorQuantize(quantizer_dropout=True)
         | 
| 337 | 
            +
                x = torch.randn(16, 512, 80)
         | 
| 338 | 
            +
                y = rvq(x)
         | 
| 339 | 
            +
                print(y["latents"].shape)
         | 
    	
        dac/utils/__init__.py
    ADDED
    
    | @@ -0,0 +1,123 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from pathlib import Path
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import argbind
         | 
| 4 | 
            +
            from audiotools import ml
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import dac
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            DAC = dac.model.DAC
         | 
| 9 | 
            +
            Accelerator = ml.Accelerator
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            __MODEL_LATEST_TAGS__ = {
         | 
| 12 | 
            +
                ("44khz", "8kbps"): "0.0.1",
         | 
| 13 | 
            +
                ("24khz", "8kbps"): "0.0.4",
         | 
| 14 | 
            +
                ("16khz", "8kbps"): "0.0.5",
         | 
| 15 | 
            +
                ("44khz", "16kbps"): "1.0.0",
         | 
| 16 | 
            +
            }
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            __MODEL_URLS__ = {
         | 
| 19 | 
            +
                (
         | 
| 20 | 
            +
                    "44khz",
         | 
| 21 | 
            +
                    "0.0.1",
         | 
| 22 | 
            +
                    "8kbps",
         | 
| 23 | 
            +
                ): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.1/weights.pth",
         | 
| 24 | 
            +
                (
         | 
| 25 | 
            +
                    "24khz",
         | 
| 26 | 
            +
                    "0.0.4",
         | 
| 27 | 
            +
                    "8kbps",
         | 
| 28 | 
            +
                ): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.4/weights_24khz.pth",
         | 
| 29 | 
            +
                (
         | 
| 30 | 
            +
                    "16khz",
         | 
| 31 | 
            +
                    "0.0.5",
         | 
| 32 | 
            +
                    "8kbps",
         | 
| 33 | 
            +
                ): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.5/weights_16khz.pth",
         | 
| 34 | 
            +
                (
         | 
| 35 | 
            +
                    "44khz",
         | 
| 36 | 
            +
                    "1.0.0",
         | 
| 37 | 
            +
                    "16kbps",
         | 
| 38 | 
            +
                ): "https://github.com/descriptinc/descript-audio-codec/releases/download/1.0.0/weights_44khz_16kbps.pth",
         | 
| 39 | 
            +
            }
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            @argbind.bind(group="download", positional=True, without_prefix=True)
         | 
| 43 | 
            +
            def download(
         | 
| 44 | 
            +
                model_type: str = "44khz", model_bitrate: str = "8kbps", tag: str = "latest"
         | 
| 45 | 
            +
            ):
         | 
| 46 | 
            +
                """
         | 
| 47 | 
            +
                Function that downloads the weights file from URL if a local cache is not found.
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                Parameters
         | 
| 50 | 
            +
                ----------
         | 
| 51 | 
            +
                model_type : str
         | 
| 52 | 
            +
                    The type of model to download. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz".
         | 
| 53 | 
            +
                model_bitrate: str
         | 
| 54 | 
            +
                    Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
         | 
| 55 | 
            +
                    Only 44khz model supports 16kbps.
         | 
| 56 | 
            +
                tag : str
         | 
| 57 | 
            +
                    The tag of the model to download. Defaults to "latest".
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                Returns
         | 
| 60 | 
            +
                -------
         | 
| 61 | 
            +
                Path
         | 
| 62 | 
            +
                    Directory path required to load model via audiotools.
         | 
| 63 | 
            +
                """
         | 
| 64 | 
            +
                model_type = model_type.lower()
         | 
| 65 | 
            +
                tag = tag.lower()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                assert model_type in [
         | 
| 68 | 
            +
                    "44khz",
         | 
| 69 | 
            +
                    "24khz",
         | 
| 70 | 
            +
                    "16khz",
         | 
| 71 | 
            +
                ], "model_type must be one of '44khz', '24khz', or '16khz'"
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                assert model_bitrate in [
         | 
| 74 | 
            +
                    "8kbps",
         | 
| 75 | 
            +
                    "16kbps",
         | 
| 76 | 
            +
                ], "model_bitrate must be one of '8kbps', or '16kbps'"
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                if tag == "latest":
         | 
| 79 | 
            +
                    tag = __MODEL_LATEST_TAGS__[(model_type, model_bitrate)]
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                download_link = __MODEL_URLS__.get((model_type, tag, model_bitrate), None)
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                if download_link is None:
         | 
| 84 | 
            +
                    raise ValueError(
         | 
| 85 | 
            +
                        f"Could not find model with tag {tag} and model type {model_type}"
         | 
| 86 | 
            +
                    )
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                local_path = (
         | 
| 89 | 
            +
                    Path.home()
         | 
| 90 | 
            +
                    / ".cache"
         | 
| 91 | 
            +
                    / "descript"
         | 
| 92 | 
            +
                    / "dac"
         | 
| 93 | 
            +
                    / f"weights_{model_type}_{model_bitrate}_{tag}.pth"
         | 
| 94 | 
            +
                )
         | 
| 95 | 
            +
                if not local_path.exists():
         | 
| 96 | 
            +
                    local_path.parent.mkdir(parents=True, exist_ok=True)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    # Download the model
         | 
| 99 | 
            +
                    import requests
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    response = requests.get(download_link)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    if response.status_code != 200:
         | 
| 104 | 
            +
                        raise ValueError(
         | 
| 105 | 
            +
                            f"Could not download model. Received response code {response.status_code}"
         | 
| 106 | 
            +
                        )
         | 
| 107 | 
            +
                    local_path.write_bytes(response.content)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                return local_path
         | 
| 110 | 
            +
             | 
| 111 | 
            +
             | 
| 112 | 
            +
            def load_model(
         | 
| 113 | 
            +
                model_type: str = "44khz",
         | 
| 114 | 
            +
                model_bitrate: str = "8kbps",
         | 
| 115 | 
            +
                tag: str = "latest",
         | 
| 116 | 
            +
                load_path: str = None,
         | 
| 117 | 
            +
            ):
         | 
| 118 | 
            +
                if not load_path:
         | 
| 119 | 
            +
                    load_path = download(
         | 
| 120 | 
            +
                        model_type=model_type, model_bitrate=model_bitrate, tag=tag
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
                generator = DAC.load(load_path)
         | 
| 123 | 
            +
                return generator
         | 
    	
        dac/utils/decode.py
    ADDED
    
    | @@ -0,0 +1,95 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import warnings
         | 
| 2 | 
            +
            from pathlib import Path
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import argbind
         | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            from audiotools import AudioSignal
         | 
| 8 | 
            +
            from tqdm import tqdm
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from dac import DACFile
         | 
| 11 | 
            +
            from dac.utils import load_model
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            warnings.filterwarnings("ignore", category=UserWarning)
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            @argbind.bind(group="decode", positional=True, without_prefix=True)
         | 
| 17 | 
            +
            @torch.inference_mode()
         | 
| 18 | 
            +
            @torch.no_grad()
         | 
| 19 | 
            +
            def decode(
         | 
| 20 | 
            +
                input: str,
         | 
| 21 | 
            +
                output: str = "",
         | 
| 22 | 
            +
                weights_path: str = "",
         | 
| 23 | 
            +
                model_tag: str = "latest",
         | 
| 24 | 
            +
                model_bitrate: str = "8kbps",
         | 
| 25 | 
            +
                device: str = "cuda",
         | 
| 26 | 
            +
                model_type: str = "44khz",
         | 
| 27 | 
            +
                verbose: bool = False,
         | 
| 28 | 
            +
            ):
         | 
| 29 | 
            +
                """Decode audio from codes.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                Parameters
         | 
| 32 | 
            +
                ----------
         | 
| 33 | 
            +
                input : str
         | 
| 34 | 
            +
                    Path to input directory or file
         | 
| 35 | 
            +
                output : str, optional
         | 
| 36 | 
            +
                    Path to output directory, by default "".
         | 
| 37 | 
            +
                    If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
         | 
| 38 | 
            +
                weights_path : str, optional
         | 
| 39 | 
            +
                    Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
         | 
| 40 | 
            +
                    model_tag and model_type.
         | 
| 41 | 
            +
                model_tag : str, optional
         | 
| 42 | 
            +
                    Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
         | 
| 43 | 
            +
                model_bitrate: str
         | 
| 44 | 
            +
                    Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
         | 
| 45 | 
            +
                device : str, optional
         | 
| 46 | 
            +
                    Device to use, by default "cuda". If "cpu", the model will be loaded on the CPU.
         | 
| 47 | 
            +
                model_type : str, optional
         | 
| 48 | 
            +
                    The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
         | 
| 49 | 
            +
                """
         | 
| 50 | 
            +
                generator = load_model(
         | 
| 51 | 
            +
                    model_type=model_type,
         | 
| 52 | 
            +
                    model_bitrate=model_bitrate,
         | 
| 53 | 
            +
                    tag=model_tag,
         | 
| 54 | 
            +
                    load_path=weights_path,
         | 
| 55 | 
            +
                )
         | 
| 56 | 
            +
                generator.to(device)
         | 
| 57 | 
            +
                generator.eval()
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                # Find all .dac files in input directory
         | 
| 60 | 
            +
                _input = Path(input)
         | 
| 61 | 
            +
                input_files = list(_input.glob("**/*.dac"))
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                # If input is a .dac file, add it to the list
         | 
| 64 | 
            +
                if _input.suffix == ".dac":
         | 
| 65 | 
            +
                    input_files.append(_input)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                # Create output directory
         | 
| 68 | 
            +
                output = Path(output)
         | 
| 69 | 
            +
                output.mkdir(parents=True, exist_ok=True)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                for i in tqdm(range(len(input_files)), desc=f"Decoding files"):
         | 
| 72 | 
            +
                    # Load file
         | 
| 73 | 
            +
                    artifact = DACFile.load(input_files[i])
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    # Reconstruct audio from codes
         | 
| 76 | 
            +
                    recons = generator.decompress(artifact, verbose=verbose)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    # Compute output path
         | 
| 79 | 
            +
                    relative_path = input_files[i].relative_to(input)
         | 
| 80 | 
            +
                    output_dir = output / relative_path.parent
         | 
| 81 | 
            +
                    if not relative_path.name:
         | 
| 82 | 
            +
                        output_dir = output
         | 
| 83 | 
            +
                        relative_path = input_files[i]
         | 
| 84 | 
            +
                    output_name = relative_path.with_suffix(".wav").name
         | 
| 85 | 
            +
                    output_path = output_dir / output_name
         | 
| 86 | 
            +
                    output_path.parent.mkdir(parents=True, exist_ok=True)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    # Write to file
         | 
| 89 | 
            +
                    recons.write(output_path)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            if __name__ == "__main__":
         | 
| 93 | 
            +
                args = argbind.parse_args()
         | 
| 94 | 
            +
                with argbind.scope(args):
         | 
| 95 | 
            +
                    decode()
         | 
    	
        dac/utils/encode.py
    ADDED
    
    | @@ -0,0 +1,94 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            import warnings
         | 
| 3 | 
            +
            from pathlib import Path
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import argbind
         | 
| 6 | 
            +
            import numpy as np
         | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
            from audiotools import AudioSignal
         | 
| 9 | 
            +
            from audiotools.core import util
         | 
| 10 | 
            +
            from tqdm import tqdm
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from dac.utils import load_model
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            warnings.filterwarnings("ignore", category=UserWarning)
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            @argbind.bind(group="encode", positional=True, without_prefix=True)
         | 
| 18 | 
            +
            @torch.inference_mode()
         | 
| 19 | 
            +
            @torch.no_grad()
         | 
| 20 | 
            +
            def encode(
         | 
| 21 | 
            +
                input: str,
         | 
| 22 | 
            +
                output: str = "",
         | 
| 23 | 
            +
                weights_path: str = "",
         | 
| 24 | 
            +
                model_tag: str = "latest",
         | 
| 25 | 
            +
                model_bitrate: str = "8kbps",
         | 
| 26 | 
            +
                n_quantizers: int = None,
         | 
| 27 | 
            +
                device: str = "cuda",
         | 
| 28 | 
            +
                model_type: str = "44khz",
         | 
| 29 | 
            +
                win_duration: float = 5.0,
         | 
| 30 | 
            +
                verbose: bool = False,
         | 
| 31 | 
            +
            ):
         | 
| 32 | 
            +
                """Encode audio files in input path to .dac format.
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                Parameters
         | 
| 35 | 
            +
                ----------
         | 
| 36 | 
            +
                input : str
         | 
| 37 | 
            +
                    Path to input audio file or directory
         | 
| 38 | 
            +
                output : str, optional
         | 
| 39 | 
            +
                    Path to output directory, by default "". If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
         | 
| 40 | 
            +
                weights_path : str, optional
         | 
| 41 | 
            +
                    Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
         | 
| 42 | 
            +
                    model_tag and model_type.
         | 
| 43 | 
            +
                model_tag : str, optional
         | 
| 44 | 
            +
                    Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
         | 
| 45 | 
            +
                model_bitrate: str
         | 
| 46 | 
            +
                    Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
         | 
| 47 | 
            +
                n_quantizers : int, optional
         | 
| 48 | 
            +
                    Number of quantizers to use, by default None. If not specified, all the quantizers will be used and the model will compress at maximum bitrate.
         | 
| 49 | 
            +
                device : str, optional
         | 
| 50 | 
            +
                    Device to use, by default "cuda"
         | 
| 51 | 
            +
                model_type : str, optional
         | 
| 52 | 
            +
                    The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
                generator = load_model(
         | 
| 55 | 
            +
                    model_type=model_type,
         | 
| 56 | 
            +
                    model_bitrate=model_bitrate,
         | 
| 57 | 
            +
                    tag=model_tag,
         | 
| 58 | 
            +
                    load_path=weights_path,
         | 
| 59 | 
            +
                )
         | 
| 60 | 
            +
                generator.to(device)
         | 
| 61 | 
            +
                generator.eval()
         | 
| 62 | 
            +
                kwargs = {"n_quantizers": n_quantizers}
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                # Find all audio files in input path
         | 
| 65 | 
            +
                input = Path(input)
         | 
| 66 | 
            +
                audio_files = util.find_audio(input)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                output = Path(output)
         | 
| 69 | 
            +
                output.mkdir(parents=True, exist_ok=True)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                for i in tqdm(range(len(audio_files)), desc="Encoding files"):
         | 
| 72 | 
            +
                    # Load file
         | 
| 73 | 
            +
                    signal = AudioSignal(audio_files[i])
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    # Encode audio to .dac format
         | 
| 76 | 
            +
                    artifact = generator.compress(signal, win_duration, verbose=verbose, **kwargs)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    # Compute output path
         | 
| 79 | 
            +
                    relative_path = audio_files[i].relative_to(input)
         | 
| 80 | 
            +
                    output_dir = output / relative_path.parent
         | 
| 81 | 
            +
                    if not relative_path.name:
         | 
| 82 | 
            +
                        output_dir = output
         | 
| 83 | 
            +
                        relative_path = audio_files[i]
         | 
| 84 | 
            +
                    output_name = relative_path.with_suffix(".dac").name
         | 
| 85 | 
            +
                    output_path = output_dir / output_name
         | 
| 86 | 
            +
                    output_path.parent.mkdir(parents=True, exist_ok=True)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    artifact.save(output_path)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            if __name__ == "__main__":
         | 
| 92 | 
            +
                args = argbind.parse_args()
         | 
| 93 | 
            +
                with argbind.scope(args):
         | 
| 94 | 
            +
                    encode()
         | 
    	
        examples/reference/dingzhen_0.wav
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3db260824d11f56cdf2fccf2b84ad83c95a732ddfa2f8cb8a20b68ca06ea9ff8
         | 
| 3 | 
            +
            size 1088420
         | 
    	
        examples/source/yae_0.wav
    ADDED
    
    | Binary file (528 kB). View file | 
|  | 
    	
        modules/alias_free_torch/__init__.py
    ADDED
    
    | @@ -0,0 +1,5 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from .filter import *
         | 
| 4 | 
            +
            from .resample import *
         | 
| 5 | 
            +
            from .act import *
         | 
    	
        modules/alias_free_torch/act.py
    ADDED
    
    | @@ -0,0 +1,29 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch.nn as nn
         | 
| 4 | 
            +
            from .resample import UpSample1d, DownSample1d
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class Activation1d(nn.Module):
         | 
| 8 | 
            +
                def __init__(
         | 
| 9 | 
            +
                    self,
         | 
| 10 | 
            +
                    activation,
         | 
| 11 | 
            +
                    up_ratio: int = 2,
         | 
| 12 | 
            +
                    down_ratio: int = 2,
         | 
| 13 | 
            +
                    up_kernel_size: int = 12,
         | 
| 14 | 
            +
                    down_kernel_size: int = 12,
         | 
| 15 | 
            +
                ):
         | 
| 16 | 
            +
                    super().__init__()
         | 
| 17 | 
            +
                    self.up_ratio = up_ratio
         | 
| 18 | 
            +
                    self.down_ratio = down_ratio
         | 
| 19 | 
            +
                    self.act = activation
         | 
| 20 | 
            +
                    self.upsample = UpSample1d(up_ratio, up_kernel_size)
         | 
| 21 | 
            +
                    self.downsample = DownSample1d(down_ratio, down_kernel_size)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                # x: [B,C,T]
         | 
| 24 | 
            +
                def forward(self, x):
         | 
| 25 | 
            +
                    x = self.upsample(x)
         | 
| 26 | 
            +
                    x = self.act(x)
         | 
| 27 | 
            +
                    x = self.downsample(x)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    return x
         | 
    	
        modules/alias_free_torch/filter.py
    ADDED
    
    | @@ -0,0 +1,96 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn as nn
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
            import math
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            if "sinc" in dir(torch):
         | 
| 9 | 
            +
                sinc = torch.sinc
         | 
| 10 | 
            +
            else:
         | 
| 11 | 
            +
                # This code is adopted from adefossez's julius.core.sinc under the MIT License
         | 
| 12 | 
            +
                # https://adefossez.github.io/julius/julius/core.html
         | 
| 13 | 
            +
                def sinc(x: torch.Tensor):
         | 
| 14 | 
            +
                    """
         | 
| 15 | 
            +
                    Implementation of sinc, i.e. sin(pi * x) / (pi * x)
         | 
| 16 | 
            +
                    __Warning__: Different to julius.sinc, the input is multiplied by `pi`!
         | 
| 17 | 
            +
                    """
         | 
| 18 | 
            +
                    return torch.where(
         | 
| 19 | 
            +
                        x == 0,
         | 
| 20 | 
            +
                        torch.tensor(1.0, device=x.device, dtype=x.dtype),
         | 
| 21 | 
            +
                        torch.sin(math.pi * x) / math.pi / x,
         | 
| 22 | 
            +
                    )
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            # This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
         | 
| 26 | 
            +
            # https://adefossez.github.io/julius/julius/lowpass.html
         | 
| 27 | 
            +
            def kaiser_sinc_filter1d(
         | 
| 28 | 
            +
                cutoff, half_width, kernel_size
         | 
| 29 | 
            +
            ):  # return filter [1,1,kernel_size]
         | 
| 30 | 
            +
                even = kernel_size % 2 == 0
         | 
| 31 | 
            +
                half_size = kernel_size // 2
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                # For kaiser window
         | 
| 34 | 
            +
                delta_f = 4 * half_width
         | 
| 35 | 
            +
                A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
         | 
| 36 | 
            +
                if A > 50.0:
         | 
| 37 | 
            +
                    beta = 0.1102 * (A - 8.7)
         | 
| 38 | 
            +
                elif A >= 21.0:
         | 
| 39 | 
            +
                    beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
         | 
| 40 | 
            +
                else:
         | 
| 41 | 
            +
                    beta = 0.0
         | 
| 42 | 
            +
                window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                # ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
         | 
| 45 | 
            +
                if even:
         | 
| 46 | 
            +
                    time = torch.arange(-half_size, half_size) + 0.5
         | 
| 47 | 
            +
                else:
         | 
| 48 | 
            +
                    time = torch.arange(kernel_size) - half_size
         | 
| 49 | 
            +
                if cutoff == 0:
         | 
| 50 | 
            +
                    filter_ = torch.zeros_like(time)
         | 
| 51 | 
            +
                else:
         | 
| 52 | 
            +
                    filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
         | 
| 53 | 
            +
                    # Normalize filter to have sum = 1, otherwise we will have a small leakage
         | 
| 54 | 
            +
                    # of the constant component in the input signal.
         | 
| 55 | 
            +
                    filter_ /= filter_.sum()
         | 
| 56 | 
            +
                    filter = filter_.view(1, 1, kernel_size)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                return filter
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            class LowPassFilter1d(nn.Module):
         | 
| 62 | 
            +
                def __init__(
         | 
| 63 | 
            +
                    self,
         | 
| 64 | 
            +
                    cutoff=0.5,
         | 
| 65 | 
            +
                    half_width=0.6,
         | 
| 66 | 
            +
                    stride: int = 1,
         | 
| 67 | 
            +
                    padding: bool = True,
         | 
| 68 | 
            +
                    padding_mode: str = "replicate",
         | 
| 69 | 
            +
                    kernel_size: int = 12,
         | 
| 70 | 
            +
                ):
         | 
| 71 | 
            +
                    # kernel_size should be even number for stylegan3 setup,
         | 
| 72 | 
            +
                    # in this implementation, odd number is also possible.
         | 
| 73 | 
            +
                    super().__init__()
         | 
| 74 | 
            +
                    if cutoff < -0.0:
         | 
| 75 | 
            +
                        raise ValueError("Minimum cutoff must be larger than zero.")
         | 
| 76 | 
            +
                    if cutoff > 0.5:
         | 
| 77 | 
            +
                        raise ValueError("A cutoff above 0.5 does not make sense.")
         | 
| 78 | 
            +
                    self.kernel_size = kernel_size
         | 
| 79 | 
            +
                    self.even = kernel_size % 2 == 0
         | 
| 80 | 
            +
                    self.pad_left = kernel_size // 2 - int(self.even)
         | 
| 81 | 
            +
                    self.pad_right = kernel_size // 2
         | 
| 82 | 
            +
                    self.stride = stride
         | 
| 83 | 
            +
                    self.padding = padding
         | 
| 84 | 
            +
                    self.padding_mode = padding_mode
         | 
| 85 | 
            +
                    filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
         | 
| 86 | 
            +
                    self.register_buffer("filter", filter)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                # input [B, C, T]
         | 
| 89 | 
            +
                def forward(self, x):
         | 
| 90 | 
            +
                    _, C, _ = x.shape
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    if self.padding:
         | 
| 93 | 
            +
                        x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
         | 
| 94 | 
            +
                    out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                    return out
         | 
    	
        modules/alias_free_torch/resample.py
    ADDED
    
    | @@ -0,0 +1,57 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch.nn as nn
         | 
| 4 | 
            +
            from torch.nn import functional as F
         | 
| 5 | 
            +
            from .filter import LowPassFilter1d
         | 
| 6 | 
            +
            from .filter import kaiser_sinc_filter1d
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            class UpSample1d(nn.Module):
         | 
| 10 | 
            +
                def __init__(self, ratio=2, kernel_size=None):
         | 
| 11 | 
            +
                    super().__init__()
         | 
| 12 | 
            +
                    self.ratio = ratio
         | 
| 13 | 
            +
                    self.kernel_size = (
         | 
| 14 | 
            +
                        int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
         | 
| 15 | 
            +
                    )
         | 
| 16 | 
            +
                    self.stride = ratio
         | 
| 17 | 
            +
                    self.pad = self.kernel_size // ratio - 1
         | 
| 18 | 
            +
                    self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
         | 
| 19 | 
            +
                    self.pad_right = (
         | 
| 20 | 
            +
                        self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
         | 
| 21 | 
            +
                    )
         | 
| 22 | 
            +
                    filter = kaiser_sinc_filter1d(
         | 
| 23 | 
            +
                        cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
         | 
| 24 | 
            +
                    )
         | 
| 25 | 
            +
                    self.register_buffer("filter", filter)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                # x: [B, C, T]
         | 
| 28 | 
            +
                def forward(self, x):
         | 
| 29 | 
            +
                    _, C, _ = x.shape
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                    x = F.pad(x, (self.pad, self.pad), mode="replicate")
         | 
| 32 | 
            +
                    x = self.ratio * F.conv_transpose1d(
         | 
| 33 | 
            +
                        x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
         | 
| 34 | 
            +
                    )
         | 
| 35 | 
            +
                    x = x[..., self.pad_left : -self.pad_right]
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                    return x
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            class DownSample1d(nn.Module):
         | 
| 41 | 
            +
                def __init__(self, ratio=2, kernel_size=None):
         | 
| 42 | 
            +
                    super().__init__()
         | 
| 43 | 
            +
                    self.ratio = ratio
         | 
| 44 | 
            +
                    self.kernel_size = (
         | 
| 45 | 
            +
                        int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
         | 
| 46 | 
            +
                    )
         | 
| 47 | 
            +
                    self.lowpass = LowPassFilter1d(
         | 
| 48 | 
            +
                        cutoff=0.5 / ratio,
         | 
| 49 | 
            +
                        half_width=0.6 / ratio,
         | 
| 50 | 
            +
                        stride=ratio,
         | 
| 51 | 
            +
                        kernel_size=self.kernel_size,
         | 
| 52 | 
            +
                    )
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def forward(self, x):
         | 
| 55 | 
            +
                    xx = self.lowpass(x)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    return xx
         | 
    	
        modules/commons.py
    CHANGED
    
    | @@ -384,12 +384,50 @@ def build_model(args, stage="DiT"): | |
| 384 | 
             
                        sampling_ratios=args.length_regulator.sampling_ratios,
         | 
| 385 | 
             
                        is_discrete=args.length_regulator.is_discrete,
         | 
| 386 | 
             
                        codebook_size=args.length_regulator.content_codebook_size,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 387 | 
             
                    )
         | 
| 388 | 
             
                    cfm = CFM(args)
         | 
| 389 | 
             
                    nets = Munch(
         | 
| 390 | 
             
                        cfm=cfm,
         | 
| 391 | 
             
                        length_regulator=length_regulator,
         | 
| 392 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 393 | 
             
                else:
         | 
| 394 | 
             
                    raise ValueError(f"Unknown stage: {stage}")
         | 
| 395 |  | 
|  | |
| 384 | 
             
                        sampling_ratios=args.length_regulator.sampling_ratios,
         | 
| 385 | 
             
                        is_discrete=args.length_regulator.is_discrete,
         | 
| 386 | 
             
                        codebook_size=args.length_regulator.content_codebook_size,
         | 
| 387 | 
            +
                        token_dropout_prob=args.length_regulator.token_dropout_prob if hasattr(args.length_regulator, "token_dropout_prob") else 0.0,
         | 
| 388 | 
            +
                        token_dropout_range=args.length_regulator.token_dropout_range if hasattr(args.length_regulator, "token_dropout_range") else 0.0,
         | 
| 389 | 
            +
                        n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
         | 
| 390 | 
            +
                        quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
         | 
| 391 | 
            +
                        f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
         | 
| 392 | 
            +
                        n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
         | 
| 393 | 
             
                    )
         | 
| 394 | 
             
                    cfm = CFM(args)
         | 
| 395 | 
             
                    nets = Munch(
         | 
| 396 | 
             
                        cfm=cfm,
         | 
| 397 | 
             
                        length_regulator=length_regulator,
         | 
| 398 | 
             
                    )
         | 
| 399 | 
            +
                elif stage == 'codec':
         | 
| 400 | 
            +
                    from dac.model.dac import Encoder
         | 
| 401 | 
            +
                    from modules.quantize import (
         | 
| 402 | 
            +
                        FAquantizer,
         | 
| 403 | 
            +
                    )
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    encoder = Encoder(
         | 
| 406 | 
            +
                        d_model=args.DAC.encoder_dim,
         | 
| 407 | 
            +
                        strides=args.DAC.encoder_rates,
         | 
| 408 | 
            +
                        d_latent=1024,
         | 
| 409 | 
            +
                        causal=args.causal,
         | 
| 410 | 
            +
                        lstm=args.lstm,
         | 
| 411 | 
            +
                    )
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    quantizer = FAquantizer(
         | 
| 414 | 
            +
                        in_dim=1024,
         | 
| 415 | 
            +
                        n_p_codebooks=1,
         | 
| 416 | 
            +
                        n_c_codebooks=args.n_c_codebooks,
         | 
| 417 | 
            +
                        n_t_codebooks=2,
         | 
| 418 | 
            +
                        n_r_codebooks=3,
         | 
| 419 | 
            +
                        codebook_size=1024,
         | 
| 420 | 
            +
                        codebook_dim=8,
         | 
| 421 | 
            +
                        quantizer_dropout=0.5,
         | 
| 422 | 
            +
                        causal=args.causal,
         | 
| 423 | 
            +
                        separate_prosody_encoder=args.separate_prosody_encoder,
         | 
| 424 | 
            +
                        timbre_norm=args.timbre_norm,
         | 
| 425 | 
            +
                    )
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    nets = Munch(
         | 
| 428 | 
            +
                        encoder=encoder,
         | 
| 429 | 
            +
                        quantizer=quantizer,
         | 
| 430 | 
            +
                    )
         | 
| 431 | 
             
                else:
         | 
| 432 | 
             
                    raise ValueError(f"Unknown stage: {stage}")
         | 
| 433 |  | 
    	
        modules/cosyvoice_tokenizer/frontend.py
    CHANGED
    
    | @@ -1,52 +1,54 @@ | |
| 1 | 
            -
            # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
         | 
| 2 | 
            -
            #
         | 
| 3 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            -
            # You may obtain a copy of the License at
         | 
| 6 | 
            -
            #
         | 
| 7 | 
            -
            #   http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            -
            #
         | 
| 9 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            -
            # limitations under the License.
         | 
| 14 | 
            -
            from functools import partial
         | 
| 15 | 
            -
            import onnxruntime
         | 
| 16 | 
            -
            import torch
         | 
| 17 | 
            -
            import numpy as np
         | 
| 18 | 
            -
            import whisper
         | 
| 19 | 
            -
            import torchaudio.compliance.kaldi as kaldi
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            class CosyVoiceFrontEnd:
         | 
| 22 | 
            -
             | 
| 23 | 
            -
                def __init__(self, speech_tokenizer_model: str, device: str = 'cuda', device_id: int = 0):
         | 
| 24 | 
            -
                    self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         | 
| 25 | 
            -
                    option = onnxruntime.SessionOptions()
         | 
| 26 | 
            -
                    option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
         | 
| 27 | 
            -
                    option.intra_op_num_threads = 1
         | 
| 28 | 
            -
                    self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CPUExecutionProvider"])
         | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
                    speech_token =  | 
| 35 | 
            -
             | 
| 36 | 
            -
                     | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
                                        | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
                     | 
| 46 | 
            -
                     | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
                     | 
|  | |
|  | |
| 52 | 
             
                    return speech_feat, speech_feat_len
         | 
|  | |
| 1 | 
            +
            # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #   http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from functools import partial
         | 
| 15 | 
            +
            import onnxruntime
         | 
| 16 | 
            +
            import torch
         | 
| 17 | 
            +
            import numpy as np
         | 
| 18 | 
            +
            import whisper
         | 
| 19 | 
            +
            import torchaudio.compliance.kaldi as kaldi
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            class CosyVoiceFrontEnd:
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                def __init__(self, speech_tokenizer_model: str, device: str = 'cuda', device_id: int = 0):
         | 
| 24 | 
            +
                    self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         | 
| 25 | 
            +
                    option = onnxruntime.SessionOptions()
         | 
| 26 | 
            +
                    option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
         | 
| 27 | 
            +
                    option.intra_op_num_threads = 1
         | 
| 28 | 
            +
                    self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if device == "cuda" else "CPUExecutionProvider"])
         | 
| 29 | 
            +
                    if device == 'cuda':
         | 
| 30 | 
            +
                        self.speech_tokenizer_session.set_providers(['CUDAExecutionProvider'], [ {'device_id': device_id}])
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def extract_speech_token(self, speech):
         | 
| 33 | 
            +
                    feat = whisper.log_mel_spectrogram(speech, n_mels=128)
         | 
| 34 | 
            +
                    speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
         | 
| 35 | 
            +
                                                                            self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
         | 
| 36 | 
            +
                    speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
         | 
| 37 | 
            +
                    speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
         | 
| 38 | 
            +
                    return speech_token, speech_token_len
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def _extract_spk_embedding(self, speech):
         | 
| 41 | 
            +
                    feat = kaldi.fbank(speech,
         | 
| 42 | 
            +
                                       num_mel_bins=80,
         | 
| 43 | 
            +
                                       dither=0,
         | 
| 44 | 
            +
                                       sample_frequency=16000)
         | 
| 45 | 
            +
                    feat = feat - feat.mean(dim=0, keepdim=True)
         | 
| 46 | 
            +
                    embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
         | 
| 47 | 
            +
                    embedding = torch.tensor([embedding]).to(self.device)
         | 
| 48 | 
            +
                    return embedding
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def _extract_speech_feat(self, speech):
         | 
| 51 | 
            +
                    speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
         | 
| 52 | 
            +
                    speech_feat = speech_feat.unsqueeze(dim=0)
         | 
| 53 | 
            +
                    speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
         | 
| 54 | 
             
                    return speech_feat, speech_feat_len
         | 
    	
        modules/diffusion_transformer.py
    CHANGED
    
    | @@ -106,7 +106,7 @@ class DiT(torch.nn.Module): | |
| 106 | 
             
                    self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
         | 
| 107 | 
             
                    self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
         | 
| 108 | 
             
                    model_args = ModelArgs(
         | 
| 109 | 
            -
                        block_size=args.DiT.block_size,
         | 
| 110 | 
             
                        n_layer=args.DiT.depth,
         | 
| 111 | 
             
                        n_head=args.DiT.num_heads,
         | 
| 112 | 
             
                        dim=args.DiT.hidden_dim,
         | 
| @@ -139,7 +139,7 @@ class DiT(torch.nn.Module): | |
| 139 | 
             
                    # self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
         | 
| 140 | 
             
                    # self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))
         | 
| 141 |  | 
| 142 | 
            -
                    input_pos = torch.arange( | 
| 143 | 
             
                    self.register_buffer("input_pos", input_pos)
         | 
| 144 |  | 
| 145 | 
             
                    self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
         | 
|  | |
| 106 | 
             
                    self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
         | 
| 107 | 
             
                    self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
         | 
| 108 | 
             
                    model_args = ModelArgs(
         | 
| 109 | 
            +
                        block_size=8192,#args.DiT.block_size,
         | 
| 110 | 
             
                        n_layer=args.DiT.depth,
         | 
| 111 | 
             
                        n_head=args.DiT.num_heads,
         | 
| 112 | 
             
                        dim=args.DiT.hidden_dim,
         | 
|  | |
| 139 | 
             
                    # self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
         | 
| 140 | 
             
                    # self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))
         | 
| 141 |  | 
| 142 | 
            +
                    input_pos = torch.arange(8192)
         | 
| 143 | 
             
                    self.register_buffer("input_pos", input_pos)
         | 
| 144 |  | 
| 145 | 
             
                    self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
         | 
    	
        modules/length_regulator.py
    CHANGED
    
    | @@ -1,4 +1,5 @@ | |
| 1 | 
             
            from typing import Tuple
         | 
|  | |
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
             
            from torch.nn import functional as F
         | 
| 4 | 
             
            from modules.commons import sequence_mask
         | 
| @@ -13,6 +14,12 @@ class InterpolateRegulator(nn.Module): | |
| 13 | 
             
                        codebook_size: int = 1024, # for discrete only
         | 
| 14 | 
             
                        out_channels: int = None,
         | 
| 15 | 
             
                        groups: int = 1,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 16 | 
             
                ):
         | 
| 17 | 
             
                    super().__init__()
         | 
| 18 | 
             
                    self.sampling_ratios = sampling_ratios
         | 
| @@ -31,12 +38,59 @@ class InterpolateRegulator(nn.Module): | |
| 31 | 
             
                    self.embedding = nn.Embedding(codebook_size, channels)
         | 
| 32 | 
             
                    self.is_discrete = is_discrete
         | 
| 33 |  | 
| 34 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 35 | 
             
                    if self.is_discrete:
         | 
| 36 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 37 | 
             
                    # x in (B, T, D)
         | 
| 38 | 
             
                    mask = sequence_mask(ylens).unsqueeze(-1)
         | 
| 39 | 
             
                    x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 40 | 
             
                    out = self.model(x).transpose(1, 2).contiguous()
         | 
| 41 | 
             
                    olens = ylens
         | 
| 42 | 
             
                    return out * mask, olens
         | 
|  | |
| 1 | 
             
            from typing import Tuple
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
             
            import torch.nn as nn
         | 
| 4 | 
             
            from torch.nn import functional as F
         | 
| 5 | 
             
            from modules.commons import sequence_mask
         | 
|  | |
| 14 | 
             
                        codebook_size: int = 1024, # for discrete only
         | 
| 15 | 
             
                        out_channels: int = None,
         | 
| 16 | 
             
                        groups: int = 1,
         | 
| 17 | 
            +
                        token_dropout_prob: float = 0.5,  # randomly drop out input tokens
         | 
| 18 | 
            +
                        token_dropout_range: float = 0.5,  # randomly drop out input tokens
         | 
| 19 | 
            +
                        n_codebooks: int = 1,  # number of codebooks
         | 
| 20 | 
            +
                        quantizer_dropout: float = 0.0,  # dropout for quantizer
         | 
| 21 | 
            +
                        f0_condition: bool = False,
         | 
| 22 | 
            +
                        n_f0_bins: int = 512,
         | 
| 23 | 
             
                ):
         | 
| 24 | 
             
                    super().__init__()
         | 
| 25 | 
             
                    self.sampling_ratios = sampling_ratios
         | 
|  | |
| 38 | 
             
                    self.embedding = nn.Embedding(codebook_size, channels)
         | 
| 39 | 
             
                    self.is_discrete = is_discrete
         | 
| 40 |  | 
| 41 | 
            +
                    self.mask_token = nn.Parameter(torch.zeros(1, channels))
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    self.n_codebooks = n_codebooks
         | 
| 44 | 
            +
                    if n_codebooks > 1:
         | 
| 45 | 
            +
                        self.extra_codebooks = nn.ModuleList([
         | 
| 46 | 
            +
                            nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1)
         | 
| 47 | 
            +
                        ])
         | 
| 48 | 
            +
                    self.token_dropout_prob = token_dropout_prob
         | 
| 49 | 
            +
                    self.token_dropout_range = token_dropout_range
         | 
| 50 | 
            +
                    self.quantizer_dropout = quantizer_dropout
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    if f0_condition:
         | 
| 53 | 
            +
                        self.f0_embedding = nn.Embedding(n_f0_bins, channels)
         | 
| 54 | 
            +
                        self.f0_condition = f0_condition
         | 
| 55 | 
            +
                        self.n_f0_bins = n_f0_bins
         | 
| 56 | 
            +
                        self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins)
         | 
| 57 | 
            +
                        self.f0_mask = nn.Parameter(torch.zeros(1, channels))
         | 
| 58 | 
            +
                    else:
         | 
| 59 | 
            +
                        self.f0_condition = False
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def forward(self, x, ylens=None, n_quantizers=None, f0=None):
         | 
| 62 | 
            +
                    # apply token drop
         | 
| 63 | 
            +
                    if self.training:
         | 
| 64 | 
            +
                        n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks
         | 
| 65 | 
            +
                        dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],))
         | 
| 66 | 
            +
                        n_dropout = int(x.shape[0] * self.quantizer_dropout)
         | 
| 67 | 
            +
                        n_quantizers[:n_dropout] = dropout[:n_dropout]
         | 
| 68 | 
            +
                        n_quantizers = n_quantizers.to(x.device)
         | 
| 69 | 
            +
                        # decide whether to drop for each sample in batch
         | 
| 70 | 
            +
                    else:
         | 
| 71 | 
            +
                        n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers)
         | 
| 72 | 
             
                    if self.is_discrete:
         | 
| 73 | 
            +
                        if self.n_codebooks > 1:
         | 
| 74 | 
            +
                            assert len(x.size()) == 3
         | 
| 75 | 
            +
                            x_emb = self.embedding(x[:, 0])
         | 
| 76 | 
            +
                            for i, emb in enumerate(self.extra_codebooks):
         | 
| 77 | 
            +
                                x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1])
         | 
| 78 | 
            +
                            x = x_emb
         | 
| 79 | 
            +
                        elif self.n_codebooks == 1:
         | 
| 80 | 
            +
                            if len(x.size()) == 2:
         | 
| 81 | 
            +
                                x = self.embedding(x)
         | 
| 82 | 
            +
                            else:
         | 
| 83 | 
            +
                                x = self.embedding(x[:, 0])
         | 
| 84 | 
             
                    # x in (B, T, D)
         | 
| 85 | 
             
                    mask = sequence_mask(ylens).unsqueeze(-1)
         | 
| 86 | 
             
                    x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
         | 
| 87 | 
            +
                    if self.f0_condition:
         | 
| 88 | 
            +
                        quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device))  # (N, T)
         | 
| 89 | 
            +
                        drop_f0 = torch.rand(quantized_f0.size(0)).to(f0.device) < self.quantizer_dropout
         | 
| 90 | 
            +
                        f0_emb = self.f0_embedding(quantized_f0)
         | 
| 91 | 
            +
                        f0_emb[drop_f0] = self.f0_mask
         | 
| 92 | 
            +
                        f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
         | 
| 93 | 
            +
                        x = x + f0_emb
         | 
| 94 | 
             
                    out = self.model(x).transpose(1, 2).contiguous()
         | 
| 95 | 
             
                    olens = ylens
         | 
| 96 | 
             
                    return out * mask, olens
         | 
    	
        modules/quantize.py
    ADDED
    
    | @@ -0,0 +1,229 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from dac.nn.quantize import ResidualVectorQuantize
         | 
| 2 | 
            +
            from torch import nn
         | 
| 3 | 
            +
            from modules.wavenet import WN
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torchaudio
         | 
| 6 | 
            +
            import torchaudio.functional as audio_F
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            from .alias_free_torch import *
         | 
| 9 | 
            +
            from torch.nn.utils import weight_norm
         | 
| 10 | 
            +
            from torch import nn, sin, pow
         | 
| 11 | 
            +
            from einops.layers.torch import Rearrange
         | 
| 12 | 
            +
            from dac.model.encodec import SConv1d
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            def init_weights(m):
         | 
| 15 | 
            +
                if isinstance(m, nn.Conv1d):
         | 
| 16 | 
            +
                    nn.init.trunc_normal_(m.weight, std=0.02)
         | 
| 17 | 
            +
                    nn.init.constant_(m.bias, 0)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            def WNConv1d(*args, **kwargs):
         | 
| 21 | 
            +
                return weight_norm(nn.Conv1d(*args, **kwargs))
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            def WNConvTranspose1d(*args, **kwargs):
         | 
| 25 | 
            +
                return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            class SnakeBeta(nn.Module):
         | 
| 28 | 
            +
                """
         | 
| 29 | 
            +
                A modified Snake function which uses separate parameters for the magnitude of the periodic components
         | 
| 30 | 
            +
                Shape:
         | 
| 31 | 
            +
                    - Input: (B, C, T)
         | 
| 32 | 
            +
                    - Output: (B, C, T), same shape as the input
         | 
| 33 | 
            +
                Parameters:
         | 
| 34 | 
            +
                    - alpha - trainable parameter that controls frequency
         | 
| 35 | 
            +
                    - beta - trainable parameter that controls magnitude
         | 
| 36 | 
            +
                References:
         | 
| 37 | 
            +
                    - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
         | 
| 38 | 
            +
                    https://arxiv.org/abs/2006.08195
         | 
| 39 | 
            +
                Examples:
         | 
| 40 | 
            +
                    >>> a1 = snakebeta(256)
         | 
| 41 | 
            +
                    >>> x = torch.randn(256)
         | 
| 42 | 
            +
                    >>> x = a1(x)
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def __init__(
         | 
| 46 | 
            +
                    self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
         | 
| 47 | 
            +
                ):
         | 
| 48 | 
            +
                    """
         | 
| 49 | 
            +
                    Initialization.
         | 
| 50 | 
            +
                    INPUT:
         | 
| 51 | 
            +
                        - in_features: shape of the input
         | 
| 52 | 
            +
                        - alpha - trainable parameter that controls frequency
         | 
| 53 | 
            +
                        - beta - trainable parameter that controls magnitude
         | 
| 54 | 
            +
                        alpha is initialized to 1 by default, higher values = higher-frequency.
         | 
| 55 | 
            +
                        beta is initialized to 1 by default, higher values = higher-magnitude.
         | 
| 56 | 
            +
                        alpha will be trained along with the rest of your model.
         | 
| 57 | 
            +
                    """
         | 
| 58 | 
            +
                    super(SnakeBeta, self).__init__()
         | 
| 59 | 
            +
                    self.in_features = in_features
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    # initialize alpha
         | 
| 62 | 
            +
                    self.alpha_logscale = alpha_logscale
         | 
| 63 | 
            +
                    if self.alpha_logscale:  # log scale alphas initialized to zeros
         | 
| 64 | 
            +
                        self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
         | 
| 65 | 
            +
                        self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
         | 
| 66 | 
            +
                    else:  # linear scale alphas initialized to ones
         | 
| 67 | 
            +
                        self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
         | 
| 68 | 
            +
                        self.beta = nn.Parameter(torch.ones(in_features) * alpha)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    self.alpha.requires_grad = alpha_trainable
         | 
| 71 | 
            +
                    self.beta.requires_grad = alpha_trainable
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    self.no_div_by_zero = 0.000000001
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def forward(self, x):
         | 
| 76 | 
            +
                    """
         | 
| 77 | 
            +
                    Forward pass of the function.
         | 
| 78 | 
            +
                    Applies the function to the input elementwise.
         | 
| 79 | 
            +
                    SnakeBeta := x + 1/b * sin^2 (xa)
         | 
| 80 | 
            +
                    """
         | 
| 81 | 
            +
                    alpha = self.alpha.unsqueeze(0).unsqueeze(-1)  # line up with x to [B, C, T]
         | 
| 82 | 
            +
                    beta = self.beta.unsqueeze(0).unsqueeze(-1)
         | 
| 83 | 
            +
                    if self.alpha_logscale:
         | 
| 84 | 
            +
                        alpha = torch.exp(alpha)
         | 
| 85 | 
            +
                        beta = torch.exp(beta)
         | 
| 86 | 
            +
                    x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    return x
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            class ResidualUnit(nn.Module):
         | 
| 91 | 
            +
                def __init__(self, dim: int = 16, dilation: int = 1):
         | 
| 92 | 
            +
                    super().__init__()
         | 
| 93 | 
            +
                    pad = ((7 - 1) * dilation) // 2
         | 
| 94 | 
            +
                    self.block = nn.Sequential(
         | 
| 95 | 
            +
                        Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
         | 
| 96 | 
            +
                        WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
         | 
| 97 | 
            +
                        Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
         | 
| 98 | 
            +
                        WNConv1d(dim, dim, kernel_size=1),
         | 
| 99 | 
            +
                    )
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                def forward(self, x):
         | 
| 102 | 
            +
                    return x + self.block(x)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            class CNNLSTM(nn.Module):
         | 
| 105 | 
            +
                def __init__(self, indim, outdim, head, global_pred=False):
         | 
| 106 | 
            +
                    super().__init__()
         | 
| 107 | 
            +
                    self.global_pred = global_pred
         | 
| 108 | 
            +
                    self.model = nn.Sequential(
         | 
| 109 | 
            +
                        ResidualUnit(indim, dilation=1),
         | 
| 110 | 
            +
                        ResidualUnit(indim, dilation=2),
         | 
| 111 | 
            +
                        ResidualUnit(indim, dilation=3),
         | 
| 112 | 
            +
                        Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
         | 
| 113 | 
            +
                        Rearrange("b c t -> b t c"),
         | 
| 114 | 
            +
                    )
         | 
| 115 | 
            +
                    self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def forward(self, x):
         | 
| 118 | 
            +
                    # x: [B, C, T]
         | 
| 119 | 
            +
                    x = self.model(x)
         | 
| 120 | 
            +
                    if self.global_pred:
         | 
| 121 | 
            +
                        x = torch.mean(x, dim=1, keepdim=False)
         | 
| 122 | 
            +
                    outs = [head(x) for head in self.heads]
         | 
| 123 | 
            +
                    return outs
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            def sequence_mask(length, max_length=None):
         | 
| 126 | 
            +
              if max_length is None:
         | 
| 127 | 
            +
                max_length = length.max()
         | 
| 128 | 
            +
              x = torch.arange(max_length, dtype=length.dtype, device=length.device)
         | 
| 129 | 
            +
              return x.unsqueeze(0) < length.unsqueeze(1)
         | 
| 130 | 
            +
            class FAquantizer(nn.Module):
         | 
| 131 | 
            +
                def __init__(self, in_dim=1024,
         | 
| 132 | 
            +
                             n_p_codebooks=1,
         | 
| 133 | 
            +
                             n_c_codebooks=2,
         | 
| 134 | 
            +
                             n_t_codebooks=2,
         | 
| 135 | 
            +
                             n_r_codebooks=3,
         | 
| 136 | 
            +
                             codebook_size=1024,
         | 
| 137 | 
            +
                             codebook_dim=8,
         | 
| 138 | 
            +
                             quantizer_dropout=0.5,
         | 
| 139 | 
            +
                             causal=False,
         | 
| 140 | 
            +
                             separate_prosody_encoder=False,
         | 
| 141 | 
            +
                             timbre_norm=False,):
         | 
| 142 | 
            +
                    super(FAquantizer, self).__init__()
         | 
| 143 | 
            +
                    conv1d_type = SConv1d# if causal else nn.Conv1d
         | 
| 144 | 
            +
                    self.prosody_quantizer = ResidualVectorQuantize(
         | 
| 145 | 
            +
                        input_dim=in_dim,
         | 
| 146 | 
            +
                        n_codebooks=n_p_codebooks,
         | 
| 147 | 
            +
                        codebook_size=codebook_size,
         | 
| 148 | 
            +
                        codebook_dim=codebook_dim,
         | 
| 149 | 
            +
                        quantizer_dropout=quantizer_dropout,
         | 
| 150 | 
            +
                    )
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    self.content_quantizer = ResidualVectorQuantize(
         | 
| 153 | 
            +
                        input_dim=in_dim,
         | 
| 154 | 
            +
                        n_codebooks=n_c_codebooks,
         | 
| 155 | 
            +
                        codebook_size=codebook_size,
         | 
| 156 | 
            +
                        codebook_dim=codebook_dim,
         | 
| 157 | 
            +
                        quantizer_dropout=quantizer_dropout,
         | 
| 158 | 
            +
                    )
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    self.residual_quantizer = ResidualVectorQuantize(
         | 
| 161 | 
            +
                        input_dim=in_dim,
         | 
| 162 | 
            +
                        n_codebooks=n_r_codebooks,
         | 
| 163 | 
            +
                        codebook_size=codebook_size,
         | 
| 164 | 
            +
                        codebook_dim=codebook_dim,
         | 
| 165 | 
            +
                        quantizer_dropout=quantizer_dropout,
         | 
| 166 | 
            +
                    )
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
         | 
| 169 | 
            +
                    self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
         | 
| 170 | 
            +
                    self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    self.prob_random_mask_residual = 0.75
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    SPECT_PARAMS = {
         | 
| 175 | 
            +
                        "n_fft": 2048,
         | 
| 176 | 
            +
                        "win_length": 1200,
         | 
| 177 | 
            +
                        "hop_length": 300,
         | 
| 178 | 
            +
                    }
         | 
| 179 | 
            +
                    MEL_PARAMS = {
         | 
| 180 | 
            +
                        "n_mels": 80,
         | 
| 181 | 
            +
                    }
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    self.to_mel = torchaudio.transforms.MelSpectrogram(
         | 
| 184 | 
            +
                        n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
         | 
| 185 | 
            +
                    )
         | 
| 186 | 
            +
                    self.mel_mean, self.mel_std = -4, 4
         | 
| 187 | 
            +
                    self.frame_rate = 24000 / 300
         | 
| 188 | 
            +
                    self.hop_length = 300
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                def preprocess(self, wave_tensor, n_bins=20):
         | 
| 191 | 
            +
                    mel_tensor = self.to_mel(wave_tensor.squeeze(1))
         | 
| 192 | 
            +
                    mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
         | 
| 193 | 
            +
                    return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                def forward(self, x, wave_segments):
         | 
| 196 | 
            +
                    outs = 0
         | 
| 197 | 
            +
                    prosody_feature = self.preprocess(wave_segments)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    f0_input = prosody_feature  # (B, T, 20)
         | 
| 200 | 
            +
                    f0_input = self.melspec_linear(f0_input)
         | 
| 201 | 
            +
                    f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
         | 
| 202 | 
            +
                        f0_input.device).bool())
         | 
| 203 | 
            +
                    f0_input = self.melspec_linear2(f0_input)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    common_min_size = min(f0_input.size(2), x.size(2))
         | 
| 206 | 
            +
                    f0_input = f0_input[:, :, :common_min_size]
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    x = x[:, :, :common_min_size]
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
         | 
| 211 | 
            +
                        f0_input, 1
         | 
| 212 | 
            +
                    )
         | 
| 213 | 
            +
                    outs += z_p.detach()
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
         | 
| 216 | 
            +
                        x, 2
         | 
| 217 | 
            +
                    )
         | 
| 218 | 
            +
                    outs += z_c.detach()
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    residual_feature = x - z_p.detach() - z_c.detach()
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                    z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
         | 
| 223 | 
            +
                        residual_feature, 3
         | 
| 224 | 
            +
                    )
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    quantized = [z_p, z_c, z_r]
         | 
| 227 | 
            +
                    codes = [codes_p, codes_c, codes_r]
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    return quantized, codes
         | 
