Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
import math | |
# from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer | |
from modules.wavenet import WN | |
from modules.commons import sequence_mask | |
from torch.nn.utils import weight_norm | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from torch.nn import functional as F | |
def find_multiple(n: int, k: int) -> int: | |
if n % k == 0: | |
return n | |
return n + k - (n % k) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.project_layer = nn.Linear(d_model, 2 * d_model) | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
if embedding is None: | |
return self.norm(input) | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return weight * self.norm(input) + bias | |
class ModelArgs: | |
block_size: int = 2048 | |
vocab_size: int = 32000 | |
n_layer: int = 32 | |
n_head: int = 32 | |
dim: int = 4096 | |
intermediate_size: int = None | |
n_local_heads: int = -1 | |
head_dim: int = 64 | |
rope_base: float = 10000 | |
norm_eps: float = 1e-5 | |
has_cross_attention: bool = False | |
context_dim: int = 0 | |
uvit_skip_connection: bool = False | |
time_as_token: bool = False | |
def __post_init__(self): | |
if self.n_local_heads == -1: | |
self.n_local_heads = self.n_head | |
if self.intermediate_size is None: | |
hidden_dim = 4 * self.dim | |
n_hidden = int(2 * hidden_dim / 3) | |
self.intermediate_size = find_multiple(n_hidden, 256) | |
# self.head_dim = self.dim // self.n_head | |
class Transformer(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) | |
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
self.freqs_cis: Optional[Tensor] = None | |
self.mask_cache: Optional[Tensor] = None | |
self.max_batch_size = -1 | |
self.max_seq_length = -1 | |
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=False): | |
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: | |
return | |
head_dim = self.config.dim // self.config.n_head | |
max_seq_length = find_multiple(max_seq_length, 8) | |
self.max_seq_length = max_seq_length | |
self.max_batch_size = max_batch_size | |
dtype = self.norm.project_layer.weight.dtype | |
device = self.norm.project_layer.weight.device | |
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim, | |
self.config.rope_base, dtype).to(device) | |
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device) | |
self.use_kv_cache = use_kv_cache | |
self.uvit_skip_connection = self.config.uvit_skip_connection | |
if self.uvit_skip_connection: | |
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2] | |
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2] | |
else: | |
self.layers_emit_skip = [] | |
self.layers_receive_skip = [] | |
def forward(self, | |
x: Tensor, | |
c: Tensor, | |
input_pos: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
context: Optional[Tensor] = None, | |
context_input_pos: Optional[Tensor] = None, | |
cross_attention_mask: Optional[Tensor] = None, | |
) -> Tensor: | |
assert self.freqs_cis is not None, "Caches must be initialized first" | |
if mask is None: # in case of non-causal model | |
if not self.training and self.use_kv_cache: | |
mask = self.causal_mask[None, None, input_pos] | |
else: | |
mask = self.causal_mask[None, None, input_pos] | |
mask = mask[..., input_pos] | |
freqs_cis = self.freqs_cis[input_pos] | |
if context is not None: | |
context_freqs_cis = self.freqs_cis[context_input_pos] | |
else: | |
context_freqs_cis = None | |
skip_in_x_list = [] | |
for i, layer in enumerate(self.layers): | |
if self.uvit_skip_connection and i in self.layers_receive_skip: | |
skip_in_x = skip_in_x_list.pop(-1) | |
else: | |
skip_in_x = None | |
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x) | |
if self.uvit_skip_connection and i in self.layers_emit_skip: | |
skip_in_x_list.append(x) | |
x = self.norm(x, c) | |
return x | |
def from_name(cls, name: str): | |
return cls(ModelArgs.from_name(name)) | |
class TransformerBlock(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.attention = Attention(config) | |
self.feed_forward = FeedForward(config) | |
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
if config.has_cross_attention: | |
self.has_cross_attention = True | |
self.cross_attention = Attention(config, is_cross_attention=True) | |
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
else: | |
self.has_cross_attention = False | |
if config.uvit_skip_connection: | |
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim) | |
self.uvit_skip_connection = True | |
else: | |
self.uvit_skip_connection = False | |
self.time_as_token = config.time_as_token | |
def forward(self, | |
x: Tensor, | |
c: Tensor, | |
input_pos: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
context: Optional[Tensor] = None, | |
context_freqs_cis: Optional[Tensor] = None, | |
cross_attention_mask: Optional[Tensor] = None, | |
skip_in_x: Optional[Tensor] = None, | |
) -> Tensor: | |
c = None if self.time_as_token else c | |
if self.uvit_skip_connection and skip_in_x is not None: | |
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1)) | |
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos) | |
if self.has_cross_attention: | |
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis) | |
out = h + self.feed_forward(self.ffn_norm(h, c)) | |
return out | |
class Attention(nn.Module): | |
def __init__(self, config: ModelArgs, is_cross_attention: bool = False): | |
super().__init__() | |
assert config.dim % config.n_head == 0 | |
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
# key, query, value projections for all heads, but in a batch | |
if is_cross_attention: | |
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False) | |
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False) | |
else: | |
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) | |
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False) | |
self.kv_cache = None | |
self.n_head = config.n_head | |
self.head_dim = config.head_dim | |
self.n_local_heads = config.n_local_heads | |
self.dim = config.dim | |
# self._register_load_state_dict_pre_hook(self.load_hook) | |
# def load_hook(self, state_dict, prefix, *args): | |
# if prefix + "wq.weight" in state_dict: | |
# wq = state_dict.pop(prefix + "wq.weight") | |
# wk = state_dict.pop(prefix + "wk.weight") | |
# wv = state_dict.pop(prefix + "wv.weight") | |
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | |
def forward(self, | |
x: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
input_pos: Optional[Tensor] = None, | |
context: Optional[Tensor] = None, | |
context_freqs_cis: Optional[Tensor] = None, | |
) -> Tensor: | |
bsz, seqlen, _ = x.shape | |
kv_size = self.n_local_heads * self.head_dim | |
if context is None: | |
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1) | |
context_seqlen = seqlen | |
else: | |
q = self.wq(x) | |
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1) | |
context_seqlen = context.shape[1] | |
q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
q = apply_rotary_emb(q, freqs_cis) | |
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis) | |
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
if self.kv_cache is not None: | |
k, v = self.kv_cache.update(input_pos, k, v) | |
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) | |
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head) | |
y = self.wo(y) | |
return y | |
class FeedForward(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
def forward(self, x: Tensor) -> Tensor: | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis( | |
seq_len: int, n_elem: int, base: int = 10000, | |
dtype: torch.dtype = torch.bfloat16 | |
) -> Tensor: | |
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | |
t = torch.arange(seq_len, device=freqs.device) | |
freqs = torch.outer(t, freqs) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
return cache.to(dtype=dtype) | |
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | |
x_out2 = torch.stack( | |
[ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], | |
-1, | |
) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.max_period = 10000 | |
self.scale = 1000 | |
half = frequency_embedding_size // 2 | |
freqs = torch.exp( | |
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
) | |
self.register_buffer("freqs", freqs) | |
def timestep_embedding(self, t): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
args = self.scale * t[:, None].float() * self.freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if self.frequency_embedding_size % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class StyleEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, input_size, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size) | |
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True)) | |
self.input_size = input_size | |
self.dropout_prob = dropout_prob | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
else: | |
labels = self.style_in(labels) | |
embeddings = labels | |
return embeddings | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DiT(torch.nn.Module): | |
def __init__( | |
self, | |
args | |
): | |
super(DiT, self).__init__() | |
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False | |
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False | |
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False | |
model_args = ModelArgs( | |
block_size=16384,#args.DiT.block_size, | |
n_layer=args.DiT.depth, | |
n_head=args.DiT.num_heads, | |
dim=args.DiT.hidden_dim, | |
head_dim=args.DiT.hidden_dim // args.DiT.num_heads, | |
vocab_size=1024, | |
uvit_skip_connection=self.uvit_skip_connection, | |
time_as_token=self.time_as_token, | |
) | |
self.transformer = Transformer(model_args) | |
self.in_channels = args.DiT.in_channels | |
self.out_channels = args.DiT.in_channels | |
self.num_heads = args.DiT.num_heads | |
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True)) | |
self.content_type = args.DiT.content_type # 'discrete' or 'continuous' | |
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content | |
self.content_dim = args.DiT.content_dim # for continuous content | |
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content | |
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content | |
self.is_causal = args.DiT.is_causal | |
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim) | |
input_pos = torch.arange(16384) | |
self.register_buffer("input_pos", input_pos) | |
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet | |
if self.final_layer_type == 'wavenet': | |
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim) | |
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) | |
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1) | |
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim, | |
kernel_size=args.wavenet.kernel_size, | |
dilation_rate=args.wavenet.dilation_rate, | |
n_layers=args.wavenet.num_layers, | |
gin_channels=args.wavenet.hidden_dim, | |
p_dropout=args.wavenet.p_dropout, | |
causal=False) | |
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim) | |
self.res_projection = nn.Linear(args.DiT.hidden_dim, | |
args.wavenet.hidden_dim) # residual connection from tranformer output to final output | |
self.wavenet_style_condition = args.wavenet.style_condition | |
assert args.DiT.style_condition == args.wavenet.style_condition | |
else: | |
self.final_mlp = nn.Sequential( | |
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim), | |
nn.SiLU(), | |
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels), | |
) | |
self.transformer_style_condition = args.DiT.style_condition | |
self.class_dropout_prob = args.DiT.class_dropout_prob | |
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim) | |
self.long_skip_connection = args.DiT.long_skip_connection | |
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim) | |
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 + | |
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token), | |
args.DiT.hidden_dim) | |
if self.style_as_token: | |
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim) | |
def setup_caches(self, max_batch_size, max_seq_length): | |
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False) | |
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False): | |
class_dropout = False | |
if self.training and torch.rand(1) < self.class_dropout_prob: | |
class_dropout = True | |
if not self.training and mask_content: | |
class_dropout = True | |
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection | |
cond_in_module = self.cond_projection | |
B, _, T = x.size() | |
t1 = self.t_embedder(t) # (N, D) | |
cond = cond_in_module(cond) | |
x = x.transpose(1, 2) | |
prompt_x = prompt_x.transpose(1, 2) | |
x_in = torch.cat([x, prompt_x, cond], dim=-1) | |
if self.transformer_style_condition and not self.style_as_token: | |
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) | |
if class_dropout: | |
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 | |
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) | |
if self.style_as_token: | |
style = self.style_in(style) | |
style = torch.zeros_like(style) if class_dropout else style | |
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) | |
if self.time_as_token: | |
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) | |
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) | |
input_pos = self.input_pos[:x_in.size(1)] # (T,) | |
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None | |
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) | |
x_res = x_res[:, 1:] if self.time_as_token else x_res | |
x_res = x_res[:, 1:] if self.style_as_token else x_res | |
if self.long_skip_connection: | |
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1)) | |
if self.final_layer_type == 'wavenet': | |
x = self.conv1(x_res) | |
x = x.transpose(1, 2) | |
t2 = self.t_embedder2(t) | |
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection( | |
x_res) # long residual connection | |
x = self.final_layer(x, t1).transpose(1, 2) | |
x = self.conv2(x) | |
else: | |
x = self.final_mlp(x_res) | |
x = x.transpose(1, 2) | |
return x |