Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
import math | |
from modules.v2.dit_model import ModelArgs, Transformer | |
from modules.commons import sequence_mask | |
from torch.nn.utils import weight_norm | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000, scale=1000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = scale * t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class DiT(torch.nn.Module): | |
def __init__( | |
self, | |
time_as_token, | |
style_as_token, | |
uvit_skip_connection, | |
block_size, | |
depth, | |
num_heads, | |
hidden_dim, | |
in_channels, | |
content_dim, | |
style_encoder_dim, | |
class_dropout_prob, | |
dropout_rate, | |
attn_dropout_rate, | |
): | |
super(DiT, self).__init__() | |
self.time_as_token = time_as_token | |
self.style_as_token = style_as_token | |
self.uvit_skip_connection = uvit_skip_connection | |
model_args = ModelArgs( | |
block_size=block_size, | |
n_layer=depth, | |
n_head=num_heads, | |
dim=hidden_dim, | |
head_dim=hidden_dim // num_heads, | |
vocab_size=1, # we don't use this | |
uvit_skip_connection=self.uvit_skip_connection, | |
time_as_token=self.time_as_token, | |
dropout_rate=dropout_rate, | |
attn_dropout_rate=attn_dropout_rate, | |
) | |
self.transformer = Transformer(model_args) | |
self.in_channels = in_channels | |
self.out_channels = in_channels | |
self.num_heads = num_heads | |
self.x_embedder = weight_norm(nn.Linear(in_channels, hidden_dim, bias=True)) | |
self.content_dim = content_dim # for continuous content | |
self.cond_projection = nn.Linear(content_dim, hidden_dim, bias=True) # continuous content | |
self.t_embedder = TimestepEmbedder(hidden_dim) | |
self.final_mlp = nn.Sequential( | |
nn.Linear(hidden_dim, hidden_dim), | |
nn.SiLU(), | |
nn.Linear(hidden_dim, in_channels), | |
) | |
self.class_dropout_prob = class_dropout_prob | |
self.cond_x_merge_linear = nn.Linear(hidden_dim + in_channels + in_channels, hidden_dim) | |
self.style_in = nn.Linear(style_encoder_dim, hidden_dim) | |
def forward(self, x, prompt_x, x_lens, t, style, cond): | |
class_dropout = False | |
content_dropout = False | |
if self.training and torch.rand(1) < self.class_dropout_prob: | |
class_dropout = True | |
if self.training and torch.rand(1) < 0.5: | |
content_dropout = True | |
cond_in_module = self.cond_projection | |
B, _, T = x.size() | |
t1 = self.t_embedder(t) # (N, D) | |
cond = cond_in_module(cond) | |
x = x.transpose(1, 2) | |
prompt_x = prompt_x.transpose(1, 2) | |
x_in = torch.cat([x, prompt_x, cond], dim=-1) | |
if class_dropout: | |
x_in[..., self.in_channels:self.in_channels*2] = 0 | |
if content_dropout: | |
x_in[..., self.in_channels*2:] = 0 | |
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) | |
style = self.style_in(style) | |
style = torch.zeros_like(style) if class_dropout else style | |
if self.style_as_token: | |
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) | |
if self.time_as_token: | |
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) | |
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token, max_length=x_in.size(1)).to(x.device).unsqueeze(1) | |
input_pos = torch.arange(x_in.size(1)).to(x.device) | |
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) | |
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) | |
x_res = x_res[:, 1:] if self.time_as_token else x_res | |
x_res = x_res[:, 1:] if self.style_as_token else x_res | |
x = self.final_mlp(x_res) | |
x = x.transpose(1, 2) | |
return x | |