Seed-VC / modules /v2 /dit_wrapper.py
Plachta's picture
Upload 116 files
56a1295 verified
raw
history blame
5.83 kB
import torch
from torch import nn
import math
from modules.v2.dit_model import ModelArgs, Transformer
from modules.commons import sequence_mask
from torch.nn.utils import weight_norm
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000, scale=1000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = scale * t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class DiT(torch.nn.Module):
def __init__(
self,
time_as_token,
style_as_token,
uvit_skip_connection,
block_size,
depth,
num_heads,
hidden_dim,
in_channels,
content_dim,
style_encoder_dim,
class_dropout_prob,
dropout_rate,
attn_dropout_rate,
):
super(DiT, self).__init__()
self.time_as_token = time_as_token
self.style_as_token = style_as_token
self.uvit_skip_connection = uvit_skip_connection
model_args = ModelArgs(
block_size=block_size,
n_layer=depth,
n_head=num_heads,
dim=hidden_dim,
head_dim=hidden_dim // num_heads,
vocab_size=1, # we don't use this
uvit_skip_connection=self.uvit_skip_connection,
time_as_token=self.time_as_token,
dropout_rate=dropout_rate,
attn_dropout_rate=attn_dropout_rate,
)
self.transformer = Transformer(model_args)
self.in_channels = in_channels
self.out_channels = in_channels
self.num_heads = num_heads
self.x_embedder = weight_norm(nn.Linear(in_channels, hidden_dim, bias=True))
self.content_dim = content_dim # for continuous content
self.cond_projection = nn.Linear(content_dim, hidden_dim, bias=True) # continuous content
self.t_embedder = TimestepEmbedder(hidden_dim)
self.final_mlp = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, in_channels),
)
self.class_dropout_prob = class_dropout_prob
self.cond_x_merge_linear = nn.Linear(hidden_dim + in_channels + in_channels, hidden_dim)
self.style_in = nn.Linear(style_encoder_dim, hidden_dim)
def forward(self, x, prompt_x, x_lens, t, style, cond):
class_dropout = False
content_dropout = False
if self.training and torch.rand(1) < self.class_dropout_prob:
class_dropout = True
if self.training and torch.rand(1) < 0.5:
content_dropout = True
cond_in_module = self.cond_projection
B, _, T = x.size()
t1 = self.t_embedder(t) # (N, D)
cond = cond_in_module(cond)
x = x.transpose(1, 2)
prompt_x = prompt_x.transpose(1, 2)
x_in = torch.cat([x, prompt_x, cond], dim=-1)
if class_dropout:
x_in[..., self.in_channels:self.in_channels*2] = 0
if content_dropout:
x_in[..., self.in_channels*2:] = 0
x_in = self.cond_x_merge_linear(x_in) # (N, T, D)
style = self.style_in(style)
style = torch.zeros_like(style) if class_dropout else style
if self.style_as_token:
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
if self.time_as_token:
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token, max_length=x_in.size(1)).to(x.device).unsqueeze(1)
input_pos = torch.arange(x_in.size(1)).to(x.device)
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1)
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded)
x_res = x_res[:, 1:] if self.time_as_token else x_res
x_res = x_res[:, 1:] if self.style_as_token else x_res
x = self.final_mlp(x_res)
x = x.transpose(1, 2)
return x